Ap Biotech
MANLAB

Ensayos tiroideos para el bioquímico y el médico

Liliana M. Bergoglio, Bioquímica Endocrinóloga, Universidad Nacional de Córdoba, Córdoba, Argentina. E-mail: liberg@uolsinectis.com.ar

Jorge H. Mestman, Médico Endocrinólogo, Universidad del Sur de California, Los Ángeles, CA, Estados Unidos NACB: Guía de Consenso para el

Diagnóstico y Seguimiento de la Enfermedad Tiroidea Fuente: Revista Argentina de Endocrinología y Metabilismo, Vol 42, N° 2, Año 2005.

Mencionamos con reconocimiento los nombres de los profesionales que participaron en la revisión de la traducción del documento original sobre el cual está basada esta monografía:

Claudio Aranda, Hospital Carlos C. Durand, Buenos Aires, Argentina Aldo H. Coleoni, Universidad Nacional de Córdoba,Córdoba, Argentina.

N. Liliana F. de Muñoz, Hospital de Niños de la Santísima Trinidad, Córdoba, Argentina.

Silvia Gutiérrez, Hospital Carlos C. Durand, Buenos Aires,Argentina H. Rubén Harach, Hospital Dr. A. Oñativia, Salta,Argentina.

Gustavo C. Maccallini, Hospital Carlos C. Durand, Buenos Aires,Argentina.

Mirta B. Miras, Hospital de Niños de la Santísima Trinidad,Córdoba, Argentina.

Hugo Niepomniszcze, Universidad Nacional de Buenos Aires, Buenos Aires, Argentina.

Adriana Oneto, Hospital Carlos C. Durand, Buenos Aires, Argentina.

Eduardo Pusiol, Universidad Nacional de Cuyo, Mendoza,Argentina.

Gerardo C. Sartorio, Hospital J. M. Ramos Mejía, Buenos Aires,Argentina.

A. Métodos para determinar Tiroxina Total (T4T) y Triyodotironina Total (T3T)

La tiroxina (T4) es la principal hormona secretada por la glándula tiroides. Toda la T4 circulante deriva de la secreción tiroidea. Por el contrario, sólo aproximadamente el 20% de la triyodotironina (T3) circulante es de origen tiroideo. La mayor parte de la T3 circulante se produce por acción enzimática en tejidos no tiroideos por la 5′ monodeyodinación de la T4 (121). En efecto, la T4 aparece como una prohormona de la T3, biológicamente más activa.

La mayor parte de la T4 circulante (~99,98%) está ligada a proteínas plasmáticas de transporte específicas : la globulina transportadora detiroxina (TBG) (60-75%), la TTR/TBPA (transtiretina/prealbúmina) (15-30%) y la albúmina (~10%) (12,16).
Aproximadamente el 99,7% de la T3 circulante está unida a las proteínas plasmáticas, específicamente a la TBG, con una afinidad diez veces menor que la observada para la T4 (12).

MANLAB

Las hormonas tiroideas unidas a proteínas no ingresan a las células y, por lo tanto, se las considera biológicamente inertes, y funcionan como reservorios para la hormona tiroidea circulante.Por el contrario, las pequeñas fracciones de hormona libre penetran fácilmente en las células mediante mecanismos específicos de transporte a través de la membrana para ejercer sus efectos biológicos.

En la hipófisis, el mecanismo de retroalimentación negativo de las hormonas tiroideas sobre la secreción de TSH está mediado principalmente por la T3 producida in situ a partir de la T4 libre que entra en las células tirotróficas.

Técnicamente, ha sido más fácil desarrollar métodos para medir las concentraciones de hormonas tiroideas totales (libres + unidas a proteínas), que estimar las pequeñas concentraciones de hormonas libres.

Esto se debe a que las concentraciones de hormonas totales (T4T y T3T) se determinan a niveles nanomolares mientras que las concentraciones de hormonas libres (T4L y T3L) se miden en el rango de picomoles, y para ser válidas, esas mediciones deben estar libres de interferencia por las concentraciones mucho más altas de hormonas totales.

1.Métodos para la determinación de hormonas tiroideas totales

Los métodos para determinar T4T y T3T séricas han evolucionado a través de diversas tecnologías durante las últimas cuatro décadas.

BIOARS

Los ensayos de PBI, de la década del 50 que estimaban la concentración de T4T como “yodo unido a proteínas” fueron reemplazados en la década del 60, primero por métodos competitivos utilizando proteínas ligantes, y posteriormente en la década del 70 por métodos de radioinmunoensayo (RIA).

Actualmente, las concentraciones de T4T y T3T se miden por inmunoensayos competitivos que son principalmente no isotópicos y que usan enzimas , moléculas f luorescentes o quimioluminiscentes como señales (135). Los métodos para hormonas totales requieren la inclusión de un inhibidor (agente desplazante o bloqueante) como el ácido 8-anilino-1-naftaleno-sulfónico (ANS) o el salicilato para liberar la hormona de las proteínas transportadoras (136). El desplazamiento por parte de estos agentes de la unión de la hormona a las proteínas transportadoras, junto con la gran dilución de la muestra utilizada en los ensayos modernos, facilita la unión de la hormona al anticuerpo.

La determinación de T3T en una concentración diez veces menor en sangre, comparada con la de T4T, representa desafíos técnicos de sensibilidad y de precisión, a pesar del uso de mayores volúmenes de muestra (137). Si bien una determinación de T3 confiable en el rango alto es crítica para el diagnóstico de hipertiroidismo, también lo es una determinación confiable en el rango normal para ajustar la dosis de los fármacos antitiroideos, y detectar hipertiroidismo en pacientes enfermos hospitalizados, que pueden tener un valor paradójicamente normal de T3.

A pesar de la disponibilidad de preparaciones altamente purificadas de L-tiroxina y Ltriyodotironina cristalizadas (de la United States Pharmacopoeia (16201 Twinbrook Parkway, Rockville, MD 20852) aún no se han establecido métodos de referencia para T4T ni T3T (138,139). La naturaleza higroscópica de las preparaciones cristalinas puede afectar la exactitud de la medición gravimétrica (140). En segundo lugar, los diluyentes utilizados para reconstituir las preparaciones de L-T4 y L-T3 que se usarán como calibradores son matrices proteicas modificadas o mezclas de sueros humanos a los que se les ha extraído la hormona. En cualquier caso, la composición proteica de la matriz de los calibradores no es idéntica a la del suero del paciente. Esto puede provocar que el inhibidor de la unión a proteínas (por ejemplo el ANS) libere diferentes cantidades de hormona de las proteínas del calibrador que de la TBG en la muestra del paciente. Esto puede afectar la exactitud diagnóstica del ensayo cuando las proteínas transportadoras son anormales, como en las NTI.

Recomendación Nº 9. Para los fabricantes que desarrollan métodos de T4T y de T3T
Las divergencias entre métodos deberían reducirse por:*El desarrollo de preparaciones de referencia de L-T4 y LT3 y el establecimiento de métodos de referencia internacionales.*Asegurar que los instrumentos de medición no sean sensibles a las diferencias  entre el suero humano y la matriz del calibrador.*Asegurar que durante el proceso del ensayo, la cantidad de hormona tiroidea  liberada de las proteínas transportadoras séricas sea la misma que la liberada en  presencia del diluyente del calibrador.

2. Exactitud diagnóstica de las determinaciones de hormonas totales

La exactitud diagnóstica de las determinaciones de hormonas tiroideas totales sería igual a la de las hormonas libres si todos los pacientes tuvieran niveles idénticos de proteínas transportadoras (TBG, TTR/TBPA y albúmina) con afinidades similares para las hormonas
tiroideas. Lamentablemente, es más común que se presenten alteraciones en las concentraciones de T4T y T3T debido a alteraciones en las proteínas transportadoras, que debido a una verdadera disfunción tiroidea. En la práctica clínica resulta frecuente encontrar pacientes con alteraciones en la TBG secundarias a embarazo o tratamiento con estrógenos, como así también alteraciones genéticas (141). Las concentraciones y/o las afinidades anormales de la TBG por las hormonas tiroideas pueden distorsionar la relación entre las concentraciones de hormona total y libre (142).

BERNARDO LEW

Además, algunos sueros de pacientes contienen otras proteínas ligantes anormales, como los auto-anticuerpos anti-hormonas tiroideas, que
afectan la confiabi-lidad diagnóstica de las determinaciones de hormonas totales (143-145). Estas alteraciones en las proteínas transportadoras comprometen el uso de las determinaciones de T4T y T3T como ensayos únicos para evaluar la función tiroidea.

En lugar de esto la T4T y la T3T en suero se determinan como parte de un panel de dos determinaciones que incluyen una evaluación de la concentración de la principal proteína transportadora TBG, mediante un inmunoensayo de TBG o una prueba de “captación”. Específicamente, la relación matemática entre la concentración de hormona total y el resultado de la prueba de “captación”, se usa como “índice” de hormona libre (146). Los índices de hormonas libres (índice de T4L e índice de T3L) utilizados durante tres décadas, fueron rápidamente reemplazados por inmunoensayos que permiten estimar la hormona libre en un solo ensayo.

3. Intervalos de referencia normales para T4T y T3T séricas

Los valores de T4T presentan una cierta variabilidad entre los distintos métodos. Los rangos de referencia característicos se aproximan a 58-160 nmol/L (4,5-12,6 ?g/dL). De la misma manera los valores de T3T son dependientes del método empleado con rangos de referencia aproximados a 1,2 – 2,7 nmol/L (80 –180 ng/dL).

B. Métodos para estimar la concentración de Tiroxina Libre (T4L) y de Triyodotironina Libre (T3L)

Recomendación Nº 10. Determinaciones séricas de T4 total y de T3 total
Las concentraciones séricas anormales de T4T y T3T se encuentran más frecuentemente como resultado de anormalidades en las proteínas transportadoras que debido a una disfunción tiroidea.*Los ensayos de T4 libre (T4L) se prefieren a los de T4T cuando la concentración de TBG es anormal. Sin embargo, los ensayos de T4L pueden carecer de exactitud diagnóstica cuando la afinidad de la TBG por las hormonas tiroideas está alterada o en presencia de proteínas ligantes de T4 anormales.*Los ensayos de hormonas totales (T4T y T3T) deberían estar rápidamente  disponibles para tener la posibilidad de evaluar las causas de discordancia en los  ensayos de hormonas libres.

La T4 circulante está unida más fuertemente a las proteínas séricas que la T3, en consecuencia, la fracción biodisponible de T4 libre (T4L) es menor que la de T3 libre (0,02% versus 0,2%, T4L versus T3L, respectivamente). Lamentablemente, las técnicas físicas que se utilizan para separar las pequeñísimas fracciones de hormona libre de las fracciones predominantes unidas a proteínas son complejas, engorrosas, y relativamente costosas para el uso de rutina en el laboratorio clínico. Los métodos que emplean separación física entre la hormona libre y la unida (es decir,diálisis de equilibrio, ultrafiltración y filtración con gel) suelen estar disponibles sólo en los laboratorios de referencia. Los laboratorios clínicos de rutina comúnmente utilizan una variedad de ensayos para hormonas libres que estiman la concentración de hormona libre en presencia de hormona unida a proteínas.

Estas estimaciones de hormonas libres emplean la estrategia de realizar dos ensayos independientes para calcular el “índice” de hormona libre o diversos métodos de ensayos con ligandos (14,145,147). En realidad, a pesar de lo que sostienen los fabricantes, prácticamente la totalidad de los ensayos que estiman T4L y T3L dependen en cierto grado de las proteínas transportadoras (148,149). Esta dependencia impacta negativamente en la eficiencia diagnóstica de los métodos de hormonas libres, sujetos a diferentes interferencias que pueden causar resultados inapropiadamente anormales o una interpretación errónea de los mismos (Tabla 1).


Estas interferencias incluyen sensibilidad a proteínas transportadoras anormales, efectos in vivo o in vitro de diversos medicamentos, niveles elevados de ácidos grasos libres (FFA) e inhibidores endógenos o exógenos de la unión de la hormona a las proteínas transportadoras, presentes en ciertas condiciones patológicas (60).

alt
Recomendación Nº 11. Nomenclatura para los ensayos de hormonas libres
*Los métodos para hormonas libres utilizados por la mayoría de los laboratorios clínicos (índices e inmunoensayos) no emplean separación física entre la hormona  unida y la libre ni miden directamente las concentraciones de hormona libre. Estos  métodos se caracterizan por un cierto grado de dependencia de las proteínas transportadoras y sería más adecuado denominarlos ensayos de «Estimación de las hormonas libres», abreviándolos de la siguiente manera: ET4L y ET3L.*En general, los ensayos de estimación de hormonas libres sobreestiman el nivel de T4L a altas concentraciones de proteínas y lo subestiman a bajas concentraciones.

1.Nomenclatura de los métodos que estiman T4 libre (T4L) y T3 libre (T3L)

La nomenclatura de los ensayos de hormonas libres es bastante confusa. Tampoco se ha logrado un acuerdo acerca de la validez técnica de estas mediciones ni de su utilidad clínica en condiciones asociadas con alteraciones en las proteínas transportadoras (145,147,148,150, 151). Las determinaciones de hormonas libres en los laboratorios clínicos se realizan utilizando índices que requieren dos ensayos separados, ensayos de ligandos en una única determinación, o métodos de separación física que separan la hormona libre de la unida a proteínas antes de su medida directa en la fracción libre. Los ensayos de ligandos están estandarizados con soluciones que contienen concentraciones de la hormona establecidas por gravimetría, o utilizan calibradores con valores asignados por un método de separación física (por ejemplo, diálisis de equilibrio y/o ultrafiltración).

Los métodos de separación física generalmente son manuales, técnicamente complejos y bastante costosos para el uso clínico de rutina. Los índices y los métodos de ligandos son los que se utilizan con más frecuencia en el laboratorio clínico, donde generalmente se realizan en autoanalizadores para inmunoensayos (17).

Lamentablemente, un exceso confuso de términos se ha utilizado para distinguir los diferentes métodos para hormonas libres, y la literatura está llena de inconsistencias en cuanto a la nomenclatura de estos métodos. En la actualidad, no hay una distinción metodológica clara entre términos como “T7”, “índice de tiroxina efectiva”, “de un paso”, “análogo”,“de dos pasos”, “retrotitulación”, “secuencial”,“inmunoextracción” o“inmunosecuestro”,“ensayo con ligandos” porque los fabricantes han modificado las técnicas originales o las han adaptado a la automatización(147). Después del lanzamiento de los métodos originales con “análogos” de un paso en la década del 70, el término “análogo” se volvió confuso (147).

La primera generación de ensayos con análogos de hormonas dependía en alto grado de las proteínas transportadoras y ha sido reemplazada por una nueva generación de ensayos de “análogos” con el anticuerpo marcado, que son más resistentes a la presencia de proteínas transportadoras anormales (147,152). Desafortunadamente, los fabricantes rara vez revelan todos los componentes de los ensayos o el número de pasos involucrados en un procedimiento automatizado, por lo que no es posible utilizar la nomenclatura del método (de dos pasos, análogo, etc.) para predecir su eficiencia diagnóstica al evaluar pacientes con anormalidades en las proteínas transportadoras (152).

IBSA

2. Métodos para calcular los índices de hormona libre: índice de T4L y de T3L

Los índices permiten estimar la concentración de hormonas libres requiriendo dos determinaciones independientes (146). Una, es la determinación de hormona total (T4T o T3T), y la otra, es la evaluación de la concentración de la principal proteína transportadora de hormonas tiroideas, ya sea mediante un inmunoensayo de TBG, o mediante un ensayo de “captación” de T4 o de T3 denominado: Ensayo
de Proporción de hormona tiroidea unida (THBR). Otra posibilidad es calcular los índices combinando una determinación de T4T con una
estimación de la fracción de T4 libre establecida mediante diálisis isotópica. En este caso, la calidad y pureza del trazador utilizado repercuten fundamentalmente en la exactitud de los índices (149,153,154).

2.1. Índices que utilizan la determinación de TBG

El cálculo del índice de T4L utilizando la TBG sólo mejora la eficiencia diagnóstica en comparación con la T4T cuando la anormalidad de la T4T es el resultado de una concentración anormal de TBG. Además, el método del índice T4T/TBG no es completamente independiente de la TBG ni corrige las alteraciones en las proteínas transportadoras no relacionadas con la TBG, ni las originadas en las moléculas de TBG con afinidades anormales (141,155-158). Por lo tanto, a pesar de las ventajas teóricas de medir TBG, los índices T4T/TBG se utilizan muy poco porque la capacidad de unión de la TBG puede estar alterada independientemente de los cambios en su concentración, en especial en
pacientes con NTI (99). Además, la hormona unida a TBG refleja el 60 – 75% de la capacidad total de unión, por lo tanto, si se tiene en
cuenta sólo la unión a TBG, no se podrán detectar las anormalidades en la transtiretina y en la albúmina.

2.2. Índices que utilizan la Proporción de Hormona Tiroidea Unida (THBR) o Ensayos de “Captación”

Recomendación Nº 12. Ensayos de Proporción de hormona tiroidea unida (THBR) o Ensayos de «captación»
*Los ensayos de «captación» se deberían llamar ensayos de «Proporción de hormona tiroidea unida», abreviadas THBR, e incluir la hormona que se está utilizando, es  decir THBR (T4) o THBR (T3).*Para las determinaciones de THBR se prefiere usar T4 como trazador (en lugar de  T3) para reflejar mejor las anormalidades de las proteínas transportadoras de T4.*Los valores de THBR deberían informarse como una relación con el resultado de un suero normal que tiene un valor asignado de 1,00.*Los cálculos de THBR deberían basarse en la relación entre las cuentas (cpm) del  adsorbente divididas por las cuentas totales menos las cuentas del absorbente, más que en la relación entre las cuentas del absorbente y las cuentas totales.*Además del valor de la hormona total y del índice de hormona libre, debería  informarse el resultado de THBR.*Los ensayos de THBR no deberían ser usados como parámetro independiente para evaluar el estado tiroideo, sino en relación con la determinación de T4T y/o de T3T, y para producir estimaciones de hormonas libres (índices de T4Lo T3L).

Los ensayos de “captación” se han usado para estimar la hormona tiroidea unida a proteínas como la validez de utilizar ensayos de captación
de T3 para corregir un valor de T4T es cuestionable, algunos ensayos no isotópicos actuales utilizan una “captación de T4”. Muchos fabricantes todavía utilizan el método “clásico” para producir ensayos de captación de T3 en los que el porcentaje de captación normal puede variar entre un 25% y un 49% (cuentas unidas/ cuentas totales). Tradicionalmente, el índice de tiroxina libre, a veces llamado “T7” deriva del producto de una prueba de captación de T3 y una determinación de TT4, frecuentemente expresada como un % de captación (cuentas unidas al adsorbente divididas por cuentas totales).

MERCK

Los ensayos “clásicos” de captación de T3 o THBR típicamente están influenciados por la concentración endógena de T4 de la muestra. Esta limitación puede solucionarse utilizando un gran exceso de trazador de T4 no isotópicamente marcado con una afinidad por las proteínas transportadoras comparable a la de la T4. Los ensayos actuales de THBR generalmente producen valores normales en los índices de T4L y de T3L, cuando las anormalidades de la TBG son leves (por ejemplo, durante el embarazo). Sin embargo, algunos de estos ensayos pueden producir valores de índices inadecuadamente anormales cuando los pacientes tienen grandes alteraciones en las proteínas transportadoras (TBG congénitamente alta o baja, hipertiroxinemia disalbuminémica familiar (FDH), autoanticuerpos a hormonas tiroideas o NTI) y en presencia de algunos medicamentos que influyen en la unión de las hormonas tiroideas a sus proteínas.

2.3. Índices que utilizan una determinación de la fracción de hormonas libres

Los primeros ensayos de hormonas libres desarrollados en la década del 60 fueron índices calculados a partir del producto de la fracción de hormona libre de un dializado, multiplicado por la T4T (determinada por PBI y luego por RIA) (159,160). El método del índice de la fracción libre se extendió más tarde a la determinación de la velocidad de transferencia de la hormona marcada isotópicamente a través de una
membrana que separaba dos cámaras que contenían la misma muestra sin diluir. Los índices de hormonas libres calculados con
fracciones isotópicas libres no son completamente  independientes de la concentración de TBG y además están influenciados por la pureza radioquímica, la matriz del buffer y el factor de dilución utilizado (161,162).

Recomendación Nº 13. Para los fabricantes que desarrollan ensayos de estimación de hormonas libres
*Los métodos sin separación física entre la hormona unida y la libre no deben extraer más del 1-2% de la hormona unida a las proteínas transportadoras, para que se preserve el equilibrio dinámico tanto como sea posible.*Minimizar los efectos de dilución que debilitan la influencia de los inhibidores  endógenos presentes en la muestra.*Utilizar calibradores séricos que contengan concentraciones conocidas de hormona libre que se comporten en el ensayo de modo idéntico a las muestras de los  pacientes.*Realizar los ensayos a 37ºC.

3.Ensayos con ligandos para la estimación de T4L y T3L

Estos métodos emplean el procedimiento de “un paso” o de “dos pasos”. Los ensayos de dos pasos utilizan una separación física de la hormona libre de la unida a proteína antes de medir la hormona libre con un inmunoensayo sensible, o, como alternativa, usan un anticuerpo para  inmuno-extraer una proporción de ligando de la muestra antes de la cuantificación. Por el contrario, los ensayos con ligandos de un paso intentan cuantificar la hormona libre en presencia de las proteínas transportadoras. Los métodos de dos pasos son menos susceptibles a artefactos no específicos. Los métodos en un solo paso pueden resultar inválidos cuando la muestra y los estándares difieren en su afinidad por el trazador del ensayo (60,145,150).

3.1. Ensayos con ligandos que utilizan separación física

Los métodos de T4L que separan físicamente la hormona libre de la unida a proteínas antes medir la concentración de hormona libre mediante un inmunoensayo sensible, se estandarizan utilizando soluciones que contengan T4 preparadas por gravimetría. La separación física de la hormona libre de la unida a proteína se logra con una membrana semipermeable que usa una cámara de diálisis, una técnica de ultrafiltración o una columna de adsorción con resina Sephadex LH-20 (161-165). Se necesita un RIA de T4 extremadamente sensible para medir las concentraciones de picomoles de T4L en dializados, o en la fracción libre separada, en comparación con determinaciones de hormona total en el rango nanomolar. Aunque no existe ningún método de determinación de hormona libre oficialmente reconocido como “patrón”, generalmente se considera que los métodos que emplean separación física son los menos influenciados por las proteínas transportadoras, y por inferencia, dan por resultado los valores de hormonas libres que mejor reflejan el nivel de hormonas libres circulantes (94,166). Sin embargo, los métodos de diálisis que emplean un paso de dilución pueden subestimar la T4L en presencia de inhibidores de la unión en la muestra, y la adsorción de la T4 a los materiales de la membrana puede significar un problema (94,166). Por el contrario, esos métodos pueden
sobreestimar la T4L sérica en pacientes heparinizados como resultado de la generación in vitro de ácidos grasos libres (FFA) (84,97,98,100,101,167-170).

Este efecto in vitro de la heparina es la causa primaria de valores falsamente altos de T4L en pacientes con NTI (101). Los métodos de separación física requieren demasiado esfuerzo y son muy costosos para su uso de rutina en los laboratorios clínicos y generalmente sólo están disponibles en laboratorios de referencia. Los métodos de T3L que emplean separación física sólo están disponibles en algunos laboratorios de investigación especializados (102).

3.2 Ensayos de ligandos sin separación física

La mayoría de los inmunoensayos para la determinación de hormonas libres actualmente en uso, emplean un anticuerpo específico con gran afinidad por la hormona para secuestrar una pequeña cantidad de la hormona total de la muestra. Los sitios de unión en el anticuerpo que se encuentran desocupados y que generalmente son inversamente proporcionales a la concentración de hormona libre se cuantifican utilizando hormona marcada con radioactividad, fluorescencia o quimioluminiscencia.
La señal luego se convierte en concentración de hormona libre utilizando calibradores con valores de hormona libre asignados por un método de separación física.
La proporción real de hormona tiroidea total secuestrada varía con el diseño del método, pero excede ampliamente la concentración real de hormona libre y debería ser 12% para minimizar la alteración del equilibrio hormona libre-unida. El secuestro activo de hormonas por los anticuerpos anti-hormonas tiroideas del ensayo, resulta en una continua separación de la hormona de las proteínas transportadoras y en una alteración del equilibrio entre unida y libre. La clave para la validez de estos métodos es doble. Primero, es necesario usar condiciones que mantengan el equilibrio entre la hormona libre y la unida a proteínas y minimizar los efectos de dilución que debilitan la influencia de los inhibidores endógenos presentes en la muestra. En segundo lugar, es importante utilizar calibradores séricos que contengan concentraciones conocidas de hormona libre, que se comporten en el ensayo de modo idéntico a las muestras de los pacientes. Se han utilizado tres métodos
generales para desarrollar inmunoensayos comparables para la determinación de T4L y T3L: (I) hormona marcada, de dos pasos; (II) análogo, marcado, de un paso; y (III) anticuerpo marcado.

3.2.a. Métodos de Hormona marcada, de dos pasos / Métodos de Retrotitulación

Los métodos de dos pasos se desarrollaron por primera vez con fines de investigación a fines de la década del 70 y luego se los adaptó para producir métodos comerciales de T4L y T3L. Durante el primer paso de incubación, estos métodos usaban un anticuerpo anti hormona de 11 alta afinidad (>1×10 L/mol) unido a un soporte sólido (Sephadex ultrafino, partículas o tubos recubiertos) para secuestrar una pequeña proporción de la hormona total de la muestra sérica.

Después de un breve período de incubación, los constituyentes del ensayo no unidos, se eliminaban por lavado antes del segundo paso en el que se agregaba suficiente hormona marcada para unirse a todos los sitios de ligadura desocupados del anticuerpo. Después del lavado, la cantidad de hormona marcada unida al anticuerpo en fase sólida se cuantifica con relación a estándares gravimétricos o a calibradores que tienen valores de hormona libre asignados por un método de referencia. Los métodos del análogo de la hormona marcado de un paso se
introdujeron también a fines de la década del 70. Estos nuevos ensayos eran menos laboriosos que las técnicas de dos pasos. Como resultado, los métodos en dos pasos perdieron popularidad a pesar de que los estudios comparativos mostraron que estaban menos afectados por la concentración de albúmina y las anormalidades en las proteínas transportadoras, las cuales ejercen un impacto negativo en la eficiencia diagnóstica de los ensayos de un solo paso (147,171-173).

3.2.b. Métodos de análogos marcados de la hormona de un paso

La validez fisicoquímica de los ensayos de análogos de hormonas marcados de un paso dependía del desarrollo de un análogo de la hormona con una estructura molecular que fuera totalmente no reactiva con las proteínas séricas pero que pudiese reaccionar con los sitios no ocupados del anticuerpo para la hormona. Cuando estas condiciones se cumplen,el análogo de la hormona, químicamente acoplado a una molécula de señal como un isótopo o una enzima, puede competir con la hormona libre por un número limitado de sitios de unión en el anticuerpo, en un formato clásico de inmunoensayo competitivo. Aunque conceptualmente atractivo, este método es técnicamente difícil de lograr en la práctica, a pesar de los supuestos éxitos iniciales. Los métodos de análogos de la hormona se crearon principalmente para proporcionar valores normales de T4L en estados de TBG elevada (por ejemplo, durante el embarazo). Sin embargo, se demostró que tenían una pobre exactitud
diagnóstica en presencia de concentraciones anormales de albúmina, FDH, NTI, niveles altos de FFA o autoanticuerpos anti hormonas tiroideas. Durante la década del 80 se realizaron esfuerzos considerables para corregir estos problemas mediante el agregado de productos químicos patentados para bloquear la unión del análogo a la albúmina o ajustando empíri-camente los valores del calibrador para corregir las desviaciones dependientes de las proteínas. No obstante, después de una década de críticas, la mayoría de los métodos del análogo de la hormona se han abandonado porque no fue posible resolver estos problemas (147).

3.2.c. Métodos de anticuerpo marcado

Los métodos de anticuerpo marcado también miden la hormona libre en función de la fracción de los sitios de unión del anticuerpo para la hormonaocupados. Estos métodos competitivos utilizan inmunoabsorbentes específicos en la mezcla de reacción para evaluar los sitios del anticuerpo no ocupados. Un método relacionado consiste en el uso de complejos hormona/proteína en fase sólida sin marcar (a veces también denominados “análogos”) que no reaccionan significativa-mente con las proteínas séricas, para cuanti-ficar los sitios no ocupados del anticuerpo en fase líquida. El fundamento fisicoquímico de estos métodos de anticuerpo marcado sugiere que pueden ser tan susceptibles a los mismos errores como los métodos más antiguos de análogos de hormona marcados.

Sin embargo, las diferencias fisicoquímicas que surgen de la fijación del análogo al soporte sólido generan diferencias cinéticas que dan por resultado una disminución en la afinidad de este análogo por las proteínas transportadoras y una determi-nación más confiable de la hormona libre. En la actualidad, el método de anticuerpo marcado es el preferido por la mayoría de los autoanalizadores.

3.3. Comportamiento de los ensayos de T4L y T3L en diferentes situaciones clínicas

La única razón para seleccionar ensayos de hormonas tiroideas libres (T4L o T3L) en vez de hormonas tiroideas totales (T4T o T3T) es lograr
una mejor eficiencia diagnóstica en la detección de hipo-e hipertiroidismo en pacientes con anormalidades en las proteínas de transporte que comprometan dicha eficiencia en las determinaciones de hormona total (60). Lamentablemente, la eficiencia diagnóstica de
los métodos actuales para la determinación de hormonas libres no se puede predecir en base a las características del método (de un solo paso,de dos pasos, de anticuerpo marcado, etc.) ni tampoco por su validación técnica por medio de procedimientos como la prueba de dilución de la muestra. Tanto los índices (FT4I y FT3I) como los métodos que involucran ligandos, son en cierto grado proteína-dependientes, y pueden
dar resultados no confiables cuando las proteínas transportadoras son significativamente anormales (148).

El fuerte impulso por desarrollar ensayos de hormonas libres, se ha debido a la alta frecuencia de anormalidades en las proteínas transportadoras que causan discordancia entre las hormonas totales y libres. Desafortunadamente, ningún método actual de T4L es válido en todas las situaciones clínicas. Cuando la concentración de TBG es anormal, la mayoría de los métodos de T4L dan resultados más útiles que la determinación de T4T. Sin embargo, en muchas situaciones asociadas con anormalidades de proteínas transportadoras aparecen artefactos pre-analíticos o analíticos: cuando la unión del trazador a la albúmina es anormal, en presencia de medicamentos que desplazan la T4 de la TBG, durante fases críticas de las enfermedades no tiroideas, y en el embarazo (ver Tabla 1). La frecuencia de estos artefactos en los ensayos de T4L sugiere que la TSH o la relación TSH / T4L es un parámetro tiroideo más confiable que la sola estimación de la T4L.

Un resultado discordante de T4L, se debería confirmar utilizando un método de otro fabricante (generalmente determinado en otro laboratorio). Adicional o alternativamente, se puede confirmar la discrepancia con la relación T4L / T4T ya que la interferencia rara vez afecta ambas determinaciones en el mismo grado y en la misma dirección.

3.3.a. Embarazo

El aumento de TBG sérica y las concentraciones de albúmina bajas asociados con el embarazo provocan amplias variaciones en las determinaciones de T4L, dependiendo del método (47,59). Los métodos que dependen de la albúmina pueden producir valores bajos de T4L hasta en un 50 por ciento de pacientes y no son adecuados para evaluar el estado tiroideo durante el embarazo, debido a la marcada desviación negativa atribuible a la progresiva disminución de la concentración de albúmina sérica en el tercer trimestre (59). Por el contrario, los métodos como la diálisis de equilibrio suelen mostrar una desviación positiva en relación con los métodos estándares, posiblemente debido a impurezas en el trazador (60). El uso de rangos de referencia específicos para el método y para cada trimestre podría mejorar la eficiencia diagnóstica de los ensayos de hormonas libres en el embarazo. Sin embargo, prácticamente ningún fabricante ha desarrollado dicha información para sus métodos.

Recomendación Nº 14. Utilidad clínica de los ensayos de estimación de T3 libre sérica
La medición de T3 sérica tiene escasa especificidad o sensibilidad para el diagnóstico de hipotiroidismo ya que el aumento en la conversión de la T4 a T3  mantiene normales las concentraciones de T3 hasta que el hipotiroidismo alcanza un grado severo. Los pacientes con NTI o deprivación calórica generalmente presentan valores bajos de T3 total y libre. Las determinaciones de T3 sérica, interpretadas  conjuntamente con la T4L, son útiles para el diagnóstico de presentaciones  complejas o inusuales de hipertiroidismo y de ciertas condiciones clínicas raras:*Una elevada T3 sérica a menudo es un signo temprano de recurrencia de hipertiroidismo por Graves.*La relación T3T/T4T se puede utilizar para investigar el hipertiroidismo por Graves versus el no-Graves. Concretamente, una elevada relación T3T/T4T> 20 (ng/?g) o >0,024 (nmol/nmol) sugiere el estímulo tiroideo característico de la enfermedad de Graves.*La T3 sérica se puede utilizar para controlar la respuesta aguda al tratamiento de la tirotoxicosis de Graves.*Una T3 sérica alta o paradójicamente normal puede indicar hipertiroidismo en un  paciente con enfermedad no tiroidea con TSH suprimida (< 0,01 mUI/L). *Una T3  sérica alta o paradójicamente normal puede indicar hipertiroidismo inducido por amiodarona.
*Los pacientes con bocio que viven en áreas de deficiencia de yoduro deberían controlar su T3L además de la TSH para detectar tirotoxicosis por T3 provocada por autonomía focal o multifocal.*Una T3 sérica alta se encuentra frecuentemente en el bocio congénito debido a un  defecto en la organificación del yoduro (defecto de TPO), o a un defecto en la  síntesis de tiroglobulina.*Una T3 sérica alta normalmente precede a la tirotoxicosis inducida por yodo cuando los pacientes tienen bocio multinodular de larga data.*Una T3 sérica alta se ve frecuentemente en los tumores hipofisarios secretantes de  TSH.*Una T3 sérica alta se ve frecuentemente en los síndromes de resistencia a las hormonas tiroideas que generalmente se presentan sin hipertiroidismo clínico.*La determinación de T3 sérica es útil para controlar el cumplimento de la terapia supresiva con L-T3 previa al 131 centellograma con I en el carcinoma diferenciado de tiroides (CDT)*La determinación de T3 sérica es útil para distinguir el hipertiroidismo leve  (subclínico)(con TSH baja y T4Lnormal) de la toxicosis por T3, a veces causada por suplementos dietéticos que contienen T3.*La determinación de T3 sérica es útil para detectar deficiencia de yodo  (caracterizada por T4 baja y T3 alta).*La determinación de T3 sérica puede ser útil durante el tratamiento con antitiroideos para detectar la persistencia del exceso de T3 a pesar del nivel normal o bajo de T4.*La determinación de T3 sérica se puede usar para detectar recurrencia temprana de tirotoxicosis después de la suspensión del tratamiento con antitiroideos.*La determinación de T3 sérica se puede usar para establecer el grado de exceso de T3 durante el tratamiento supresivo con L-T4 o después de una sobredosis  intencional de T4.

3.3.b. Infantes prematuros

Es frecuente encontrar un nivel bajo de tiroxina sin aumento de TSH en recién nacidos prematuros de menos de 28 semanas de gestación (39,176). Existe cierta evidencia clínica que sugiere que el tratamiento con L-T4 puede mejorar el resultado neurológico (176). No obstante, según se describió anteriormente, es probable que las diferencias metodológicas en los ensayos de T4L comprometan la confiabilidad de la detección de hipotiroxinemia en los prematuros.

3.3.c. Anormalidades genéticas en las proteínas transportadoras

Las variaciones hereditarias y adquiridas en la albúmina o en la TBG con afinidades alteradas para la T4 o la T3 pueden provocar concentraciones anormales de hormona total en sujetos eut i roideos que t ienen concentraciones normales de hormona libre (141). La variante de la albúmina responsable de la hipertiroxinemia disalbuminémica familiar (FDH) tiene una afinidad marcadamente aumentada por la T4, y por numerosos trazadores análogos de T4, lo que provoca estimaciones falsamente altas de T4L sérica con estos trazadores (145,177). En la FDH, los valores de la T4T y del Índice de T4L, al igual que algunos ensayos de T4L con ligandos, dan valores por encima de los normales, mientras que la T3T, T3L, TSH y T4L determinadas por otros métodos, incluida la diálisis de equilibrio,  dan valores normales (177).

La falla en reconocer la presencia de la variante anormal de albúmina en la FDH que puede tener una prevalencia hasta de 1:1000 en algunas
poblaciones de América Latina puede llevar a una interpretación errónea de los ensayos tiroideos que deriven en la ablación de la glándula. (178).

3.3.d. Autoanticuerpos

Los sueros de algunos pacientes contienen autoanticuerpos anti-hormonas tiroideas que originan artefactos metodológicos en las determinaciones de hormonas totales o libres (143, 145). Estas interferencias por anticuerpos son método-dependientes. La T4 o T3 marcadas ligadas al anticuerpo endógeno se interpretan erróneamente como fracción unida si se usan métodos de adsorción, o como fracción libre si se usan métodos de doble anticuerpo, lo cual lleva a falsos valores bajos o altos de T4T o T3T séricas, respectivamente. Los análogos de T4 usados como trazador en algunos ensayos de T4L pueden fijarse a estos autoanticuerpos y producir resultados falsamente altos de T4L.

Hay publicaciones que informan interferencia por anticuerpos anti-fase sólida, en los ensayos de anticuerpos marcados para hormonas libres (179).

3.3.e Tirotoxicosis e hipotiroidismo

La relación entre T4 total y libre y T3 en la tirotoxicosis no es lineal. En los casos de tirotoxicosis severa, los aumentos de T4T y T4L son desproporcionados. Esta falta de linealidad refleja una disminución de los niveles de TBG y una saturación de la capacidad ligante de la TBG a pesar del aumento de la unión a TTR y albúmina (180). Asimismo, las concentraciones de T3L se pueden subestimar como resultado de una unión T4-TBG elevada. En casos de hipotiroidismo severo se presenta la situación
opuesta, es decir, una reducción de ocupación de todas las proteínas transportadoras (180). En esta situación, el exceso de sitios de unión desocupados puede anular la respuesta de la T4L al tratamiento sustitutivo. Esto sugiere que una dosis inicial de descarga de L-T4 es el método más rápido para restaurar terapéuticamente el nivel normal de T4L en un paciente hipotiroideo.

3.3.f. Fármacos que compiten con las hormonas tiroideas por la unión a las proteínas transportadoras

Ciertos agentes terapéuticos y de diagnóstico como la Fenitoína, Carbamazepina o Furosemida pueden inhibir competitivamente la unión
de las hormonas tiroideas a las proteínas transportadoras. La reducción de la disponibilidad de la proteína transportadora origina un aumento agudo de T4L y en ciertos casos un incremento en la acción hormonal que se manifiesta por un descenso en la TSH (181). El aumento en las concentraciones de T4L está influido por la dilución utilizada en el método y ocurre también en los métodos por diálisis de equilibrio (182,183).

Durante la administración crónica de fármacos competidores de este tipo, hay un aumento en la depuración de la hormona. No obstante, con el tiempo el sistema restaura el equilibrio “normal” y se normalizan los niveles de T4L a expensas de una disminución en la concentración de T4T. La suspensión del fármaco en este momento causaría una caída inicial de T4L a medida que aumenta la disponibilidad de la proteína transportadora, con la renormalización de la T4L a medida que el equilibrio se re-establece mediante una liberación incrementada de la hormona desde la glándula tiroides. El tiempo que duran y la magnitud de los efectos de estos competidores difieren según su vida media.

Una serie de medicamentos y otros factores compiten con la T4 y la T3 por la unión a la TBG y provocan un aumento agudo en la
disponibilidad de T4L y T3L. Muchos de estos competidores son medicamentos prescriptos que tienen una afinidad diferente por la TBG que la T4 (96, 184).

La furosemida, por ejemplo, se une a la TBG pero con una afinidad aproximadamente tres veces menor que la T4, mientras que la aspirina se une con una afinidad siete veces menor que la T4 (170, 185). La competencia in vivo que se observa con estos agentes se relaciona con su afinidad por la TBG más que con sus niveles terapéuticos, la fracción libre o su afinidad por proteínas diferentes de la TBG, en especial la albúmina (170, 186).

Los ensayos actuales de T4L que emplean un factor de dilución pueden no detectar el aumento de T4L secundario a la presencia de competidores por la proteína transportadora. Por ejemplo, una muestra que contenga tanto T4 (fracción libre 1:4000) como un inhibidor competitivo (fracción libre 1:100) sometida a una dilución gradual, mantendrá una concentración de T4L hasta una dilución de 1:100 secundaria a la disociación progresiva de la T4 de las proteínas transportadoras. Por el contrario, la concentración del competidor libre disminuiría marcadamente sólo después de una dilución de 1:10. Por lo tanto, los ensayos para determinar T4L que empleen una dilución alta de la muestra subestimarán el efecto de desplazamiento de la hormona por los competidores. Este artefacto se puede minimizar mediante la utilización de diálisis de equilibrio simétrica y de ultrafiltración de suero sin diluir (94,165,187,188).

3.3.g Artefactos inducidos por el tratamiento con heparina

Se sabe que en presencia de concentraciones normales de albúmina, los ácidos grasos no esterificados (FFA) en concentraciones >3mmol/L aumentarán la T4L al desplazar la hormona de su unión a la TBG (84,97,98,100,101,167-170). El suero de los pacientes tratados con heparina, ncluida la de bajo peso molecular, puede presentar valores de T4 libre falsamente aumentados secundarios a la actividad in vitro de la lipasa inducida por la heparina, que provoca un aumento de los ácidos grasos libres. Este problema se presenta con dosis de heparina tan bajos como 10 unidades y se exacerba con la conservación de la muestra. Otros factores, como el aumento en los triglicéridos, las concentraciones bajas de albúmina, o una incubación prolongada del ensayo a 37ºC, pueden acentuar este problema.

3.3.h. Enfermedades no tiroideas graves

Hay un gran número de observaciones recolectadas durante más de dos décadas con respecto a la especificidad de diversos métodos
de determinación de T4L en pacientes hospitalizados con NTI. La literatura puede resultar confusa y complicada por la heterogeneidad de las poblaciones de pacientes estudiadas y la dependencia de los resultados con respecto a los métodos. Los fabricantes han modificado progresivamente sus métodos a lo largo del tiempo en un intento de mejorar la especificidad en esta y otras situaciones en las que se presentan anormalidades en las proteínas transportadoras.

Sin embargo, la composición exacta de los equipos de reactivos comerciales actuales sigue siendo confidencial y es difícil que los fabricantes obtengan muestras con antecedentes documentados de este tipo de pacientes para el análisis riguroso de sus métodos. En un trabajo comparativo reciente de métodos de T4L, se observó una diferencia marcada, dependiente del método, el séptimo día posterior al transplante de médula ósea en individuos eurotiroideos que recibían tratamiento con múltiples fármacos (incluidos heparina y glucocorticoides) (101).

En este estudio, las concentraciones de T4T fueron normales en la mayoría de los individuos (95%) y la TSH sérica fue < 0,1 mUI/L en aproximadamente en la mitad de los individuos, en relación directa con el tratamiento de glucocorticoides que recibían. Por el contrario, tanto valores altos como subnormales de T4L se informaron usando diferentes métodos. Es probable que las estimaciones supranormales de T4L obtenidas con algunos métodos en el 20 al 40% de los pacientes, reflejaran el efecto in vitro de la heparina intravenosa descripto anteriormente. Contrariamente, los métodos del análogo, sujetos a la influencia de la unión del trazador a la albúmina, produjeron estimaciones subnormales de T4L en el 20 al 30% de los pacientes (101). Estos artefactos en las determinaciones de T4L, originan discordancia entre los resultados de T4L y TSH, aumentan el riesgo de un diagnóstico erróneo de tirotoxicosis o de hipotiroidismo secundario, y sugieren que las determinaciones de T4T pueden ser más confiables en el marco de una enfermedad crítica.

Recomendación Nº 16. Para los fabricantes: Evaluación de la exactitud diagnóstica de los ensayos de estimación de T4L
*La eficiencia diagnóstica del método se debe analizar utilizando muestras de pacientes ambulatorios con antecedentes documentados de los siguientes problemas en las proteínas transportadoras:anormalidades de la TBG (estrógenos elevados, exceso y deficiencia de TBG  congénita)Hipertiroxinemia disalbuminémica familiar (FDH)Aumento en la afinidad de la transtiretina (TTR)Autoanticuerpos anti-T4 y anti-T3Factor reumatoideo*Evaluar la interferencia del método con muestras de suero normal a las que se le  agreguen concentraciones relevantes de inhibidores comunes, en concentraciones  que provoquen el desplazamiento de la hormona de las proteínas transportadoras en  suero sin diluir, efectos que se pierden después de la dilución: Furosemida 30 uM Ácido disalicílico 300 uM Fenitoína 75 uM Carbamazepina 8 uM*Enumerar todas las interferencias conocidas con la magnitud y la dirección de los errores resultantes.*Documentar los efectos in vitro de la heparina intravenosa sobre la generación de ácidos grasos no esterificados (NEFA), durante la incubación del ensayo.

3.4.Validación de los métodos de T4L

Desafortunadamente, la mayor parte de los métodos de estimación de hormonas libres reciben una evaluación inapropiada antes de que se los incorpore al uso clínico. Los fabricantes rara vez extienden la validación de sus métodos más allá del estudio de pacientes ambulatorios con hipo o hipertiroidismo, embarazadas y una categoría general denominada “pacientes hospitalizados /enfermedades no tiroideas”. Sin embargo, en la actualidad no se ha logrado un consenso acerca de los mejores criterios para la evaluación de estos métodos de estimación de T4 libre. Cabe mencionar que no es suficiente lograr la simple demostración de que un nuevo método pueda distinguir entre valores hipotiroideos, normales e hipertiroideos, ni que ofrezca la posibilidad de comparación con métodos vigentes ya que cualquier método de estimación de hormona libre satisfará estos criterios sin que necesariamente aporte información acerca de la verdadera concentración fisiológica de hormona libre.

Se deberían evaluar los nuevos métodos con muestras clínicas con antecedentes documentados, en especial con aquellas que pudieran representar un desafío para la validez del ensayo, o alternativamente, mediante la manipulación de los constituyentes de una muestra de suero normal para evaluar un criterio particular (148). Cualquiera sea el método que se adopte, los problemas clave se relacionan con la similitud entre las muestras y los estándares, porque todos los métodos son generalmente comparables. Otros procedimientos incluyen probar la recuperación de LT4 agregada, o los efectos de la dilución del suero, ya que una dilución al 100% de un suero “normal” teóricamente provocaría una reducción insignificante (menor al 2%) en la concentración de T4L (94,152) (58,189). Sin embargo, estos procedimientos, simplemente evalúan la “dependencia proteica” del método, es decir, el grado en que la T4 libre depende de la disociación de la hormona libre de la unida (148).

Podría predecirse que estos procedimientos evaluarán desfavorablemente los métodos que impliquen un elevado grado de dilución de la muestra comparados con aquellos que minimicen la dilución. Sin embargo, no hay evidencia que documente si estos procedimientos reflejan verdaderamente la eficiencia diagnóstica del método cuando se los usa para evaluar muestras clínicas complicadas. En última instancia, como en cualquier método diagnóstico, la especificidad de un método de T4 libre sólo será evidente después de evaluar un espectro completo de muestras de individuos con y sin disfunción tiroidea asociada con anormalidades en las proteínas transportadoras o con medicamentos que afecten la unión de las hormonas tiroideas a las proteínas plasmáticas.

La detección de una interferencia inesperada se puede lograr sólo después de que los métodos se hayan usado durante un cierto tiempo, como en el caso del factor reumatoideo que puede producir estimaciones de T4L falsamente altas (112). La fluorescencia no específica debido a sustancias en sangre como ácidos orgánicos en pacientes con uremia, puede ser otra causa de interferencia (190).

El procedimiento más adecuado es prestar particular atención a las muestras que probablemente causen interferencia no específica en el resultado (98). Idealmente, en pacientes ambulatorios se deberían incluir muestras que tengan: a) anormalidades de la TBG (embarazo, anticonceptivos orales, exceso y deficiencia congénitos de TGB); b) Hipertiroxinemia disalbuminémica familiar (FDH); c) autoanticuerpos anti-T4 y anti-T3; d) sustancias interferentes como el factor reumatoideo y e) el amplio espectro de drogas terapéuticas. En pacientes hospitalizados, se deberían evaluar tres categorías: a) pacientes sin disfunción tiroidea pero con T4T baja o alta debido a NTI b) pacientes con hipotiroidismo documentado asociado con NTI severas y c) pacientes con hipertiroidismo documentado asociado con NTI.
Sin embargo, la obtención de muestras con antecedentes documentados de este tipo de pacientes resulta excesivamente difícil para los
fabricantes. Como ningún fabricante ha probado su método en pacientes críticamente enfermos, es difícil para los médicos confiar en que un resultado de T4L anormal en esos pacientes refleje una disfunción tiroidea más que una NTI.

Por lo tanto, en pacientes hospitalizados con sospecha de disfunción tiroidea, una combinación de determinaciones de TSH y de T4T puede proveer más información que un único ensayo de T4L, siempre que el valor de T4T se interprete en relación con el grado de severidad de la enfermedad.

Concretamente, un valor bajo de T4T en las NTI normalmente se restringe a pacientes graves que están en unidades de cuidado intensivo. Un valor bajo de T4T en un paciente que no está críticamente enfermo debería sugerir que se considere una disfunción hipofisaria. En pacientes ambulatorios, las determinaciones de T4L suelen tener mayor exactitud diagnóstica que las de T4T. Sin embargo, cuando una T4L anormal no coincide con el cuadro clínico, o cuando haya una discordancia inexplicable en la relación TSH /T4 L, puede ser necesaria una T4 T confirmatoria. Alternativamente el laboratorio podría, enviar la muestra a otro laboratorio que use un método de T4L de otro fabricante, o a un laboratorio de referencia que pueda realizar T4L utilizando un método de separación física como la diálisis de equilibrio o la ultrafiltración.

3.5. Interferencias con los ensayos tiroideos

Idealmente, un ensayo de hormonas tiroideas debería carecer de la interferencia de cualquier compuesto, fármaco o sustancia endógena (por ejemplo bilirrubina) en cualquier muestra y a cualquier concentración. Los estudios disponibles de los fabricantes varían ampliamente en el número de compuestos estudiados y en las concentraciones evaluadas. Generalmente el laboratorio sólo puede detectar interferencia mediante la “comprobación de validez” de la relación entre la T4L y la TSH. Si se hace solamente un ensayo, generalmente el médico es el primero en sospechar una interferencia, cuando observa una inconsistencia entre el valor informado y el estado clínico del paciente.

Los procedimientos de control clásicos de laboratorio de comprobar la identidad de la muestra y realizar diluciones, no siempre detectan interferencias. Generalmente, las interferencias en las determinaciones de T4T o de T4L generan valores inadecuadamente anormales en presencia de TSH normal (Tabla 1). Las interferencias en los inmunoensayos competitivos y no-competitivos son de tres clases: (I) problemas de reactividad cruzada, (II) anticuerpos contra el analito endógeno e (III) interacciones farmacológicas (191).

(I) Reactividad cruzada

Los problemas de reactividad cruzada son el resultado de la incapacidad del anticuerpo para discriminar entre el analito y una molécula estructuralmente relacionada (192). Los ensayos de hormonas tiroideas son menos susceptibles a este tipo de interferencia que la TSH, porque los anticuerpos anti-yodotironinas se seleccionan para una mejor especificidad enfrentándolos con preparados purificados. La disponibilidad de anticuerpos monoclonales, y de anticuerpos policlonales purificados por afinidad, redujo la reactividad cruzada de los ensayos actuales de T4 y T3 a menos de un 0,1 % para todos los precursores yodados y metabolitos de L-T4. No obstante, se han informado interferencias por el ácido 3-3′,5- triyodotiroacético (TRIAC), en ensayos de T3L, y por D-T4 en ensayos de T4L (14,135).

(II) Autoanticuerpos endógenos

Autoanticuerpos endógenos anti-T4 y anti-T3 se han encontrado frecuentemente en el suero de pacientes con autoinmunidad tiroidea, y con enfermedades no tiroideas. A pesar de su alta prevalencia, la interferencia por este tipo de auto-anticuerpos es relativamente rara y se caracteriza por valores falsamente bajos o altos, según el diseño del ensayo utilizado (193).

(III) Interferencias por fármacos

Los métodos de separación física se utilizan para asignar valores a los calibradores empleados en la mayoría de los ensayos de estimación de T4L. Hay más similitud entre los intervalos de referencia de los diversos ensayos con ligandos que entre los métodos que emplean separación física. Los intervalos de referencia para los inmunoensayos de T4L son aproximadamente 9-23 pmol/L (0,7 –1,8 ng/dL). 

Por el contrario, el límite superior de T4L para los métodos que emplean separación física, como la diálisis de equilibrio, supera los 30 pmol/L (2,5 ng/dL). Los intervalos de referencia para los inmunoensayos de T3L se aproximan a 3,5-7,7 pmol/L (0,2 – 0,5 ng/dL).

En la actualidad, los métodos para determinar T3L que emplean separación física sólo están disponibles como ensayos de investigación
(102).

3.7. Estandarización o calibración

No existen estándares ni métodos internacionales para determinaciones de hormonas libres. (139). Aunque algunos métodos de referencia han sido sugeridos para T4T, resulta difícil adaptarlos para las hormonas libres. Cada método y cada fabricante enfocan el problema de la estandarización desde su perspectiva individual.

Los métodos de estimación de T4L que requieren dos ensayos independientes (diálisis de equilibrio con trazador y ultrafiltración, al igual que los métodos de índices) usan una determinación de hormona total y una determinación de la fracción libre. Los ensayos de hormonas totales se estandarizan con calibradores preparados gravimétricamente a partir de preparaciones hormonales altamente purificadas disponibles comercialmente. La fracción libre se determina registrando las cuentas radiactivas en el dializado o ultrafiltrado.

Alternativamente, en el caso de los métodos que utilizan índices, la saturación o la capacidad ligante de las proteínas transportadoras se determina utilizando ensayos de proporción de hormonas tiroideas unidas (THBR), a veces conocidos como pruebas de “captación”. Los ensayos THBR están estandarizados contra sueros con proteínas transportadoras normales a los que se les asigna un valor de 1,00.

La situación más complicada ocurre con los ensayos de estimación de hormonas libres con ligandos. En general, estos ensayos se comercializan con estándares que tienen valores conocidos o asignados de hormona libre determinados por un método de referencia (generalmente diálisis de equilibrio con RIA de la concentración de T4L del dializado). Los fabricantes generalmente realizan esto para establecer valores de hormonas libres para los calibradores con matriz de suero humano que contenga la hormona y la(s) proteína(s) transportadora(s) para incluirlos en el equipo.

Alternativamente, en el caso de hormonas fuertemente unidas, como la tiroxina, se puede usar la Ley de Acción de las Masas para calcular la concentración de hormona libre (194). La concentración de hormona total, que es una medida de la capacidad ligante total para la hormona en esa muestra sérica, y la constante de equilibrio proveen la información necesaria para calcular la concentración de hormona libre. Este procedimiento es válido para los calibradores y controles elaborados con suero humano que contiene una capacidad ligante de TBG normal. Esto le permite al fabricante producir calibradores y controles de concentraciones prefijadas.

Además, el uso de calibradores preparados según se ha descripto, permite compensar la extracción excesiva de la hormona de sus proteínas transportadoras. Concretamente, en el caso de la tiroxina y la triyodotironina, el anticuerpo del ensayo puede unirse a la hormona libre y al mismo tiempo extraer una cantidad significativa (~1-2%) de la hormona unida a proteínas. Si se realizara un ensayo directo, se produciría un aumento en la concentración de hormona libre debido a esa extracción excesiva. Sin embargo, el uso de calibradores de concentraciones conocidas de hormona libre preparados a partir de suero humano permite asociar valores específicos de señales que el sistema lee (isotópicas, enzimáticas, fluorescentes o quimioluminiscentes) a concentraciones conocidas de hormona libre.

No obstante, esto sólo será válido si el porcentaje de hormona extraída del calibrador es idéntico al extraído de la muestra del paciente. Esto no sucede con frecuencia en el caso de muestras que presentan anormalidades en las proteínas transportadoras (por ejemplo, TBG congénitamente alta o baja, FDH, NTI etc.).

4. Determinación de hormonas libres: el futuro

La era de los inmunoensayo para cuantificar hormonas tiroideas y esteroideas en fluidos biológicos se inició en la década del 70 y está alcanzando su etapa final. Emerge progresivamente la aplicación de espectrometría de masa avanzada para la cuantificación de hormonas en fluidos biológicos (138). No hay razones para dudar que la espectrometría de masa ofrecerá una mejor cuantificación ya que su especificidad analítica es mayor y su interferencia analítica menor que la de los inmunoensayos. Por el momento, este tipo de técnicas sólo se ha aplicado a las determinaciones de T4T (139).

No obstante, para los ensayos de hormona total, se mantendrá el requisito de la liberación completa de la hormona de los complejos proteína-hormona. Para los ensayos de hormona libre, también se mantendrá el requisito de una separación física de la hormona libre de la ligada a proteínas, antes de la cuantificación. Para lograrlo, se necesitará una nueva tecnología de separación antes de que se pueda considerar cualquier método como patrón.

La dilución implícita de pequeñas moléculas es una limitación de la diálisis de equilibrio que necesita ser resuelta. La ultrafiltración es una técnica con amplias posibilidades, pero los métodos actuales son demasiado poco robustos o demasiado imprácticos para tal fin. La calidad de las mediciones por espectrometría de masa de las hormonas que forman complejos con las proteínas séricas está en relación directa con los pasos de preparación de la muestra para la cuantificación. Sin embargo, el método de referencia ideal para hormonas libres sería una técnica que emplee ultrafiltración a 37ºC, para evitar los efectos de la dilución, y la medición directa de la hormona libre en el ultrafiltrado por espectrometría de masa.

Recomendación Nº 17. Para laboratorios que realizan ensayos de T4L y T3L
*Los médicos deberían estar informados acerca de los efectos de las drogas y de la exactitud diagnóstica de los ensayos utilizados para evaluar el estado tiroideo en los pacientes que presentan anormalidades de las proteínas transportadoras y  enfermedades severas.
*El laboratorio debería estar preparado para confirmar un resultado dudoso mediante una determinación de hormona total, o una nueva determinación de T4L realizada con un método de referencia que separe físicamente la hormona libre de la unida,  como la diálisis de equilibrio o la ultrafiltración.*Se debería verificar cualquier interferencia en resultados cuestionables con una nueva determinación realizada con un método de otro fabricante. (En caso de ser  necesario, la muestra debería enviarse a otro laboratorio).

 REFERENCIAS BIBLIOGRÁFICAS1. Nohr SB, Laurberg P, Borlum KG, Pedersen Km, Johannesen PL, Damm P. Iodine deficiency in pregnancy in Denmark. Regional variations and frequency of individual iodine supplementation. Acta Obstet Gynecol Scand 1993;72:350-3. 2. Glinoer D. Pregnancy and iodine. Thyroid 2001;11:471-81. 3. Hollowell JG, Staehling NW, Hannon WH, Flanders DW, Gunter EW, Maberly GF et al. Iodine nutrition in the Unites States. Trends and public health implications: iodine excretion data from National Health and Nutrition Examination Surveys I and III (1971-1974 and 1988-1994). J Clin Endocrinol Metab 1998;83:3398-400. 4. Wartofsky L, Glinoer D, Solomon d, Nagataki S, Lagasse R, Nagayama Y et al. Differences and similarities in the diagnosis and treatment of Graves disease in Europe, Japan and the United States. Thyroid 1990;1:129-35. 5. Singer PA, Cooper DS, Levy EG, Ladenson PW, Braverman LE, Daniels G et al. Treatment guidelines for patients with hyperthyroidism and hypothyroidism. JAMA 1995;273:808-12. 6. Singer PA, Cooper DS, Daniels GH, Ladenson PW, Greenspan FS, Levy EG et al. Treatment Guidelines for Patients with Thyroid Nodules and Well-differentiated Thyroid Cancer. Arch Intern Med 1996;156:2165-72. 7. Vanderpump MPJ, Ahlquist JAO, Franklyn JA and Clayton RN. Consensus statement for good practice and audit measures in the management of hypothyroidism and hyperthyroidism. Br Med J 1996;313:539-44. 8. Laurberg P, Nygaard B, Glinoer D, Grussendorf M and Orgiazzi J. Guidelines for TSH-receptor antibody measurements in pregnancy: results of an evidence-based symposium organized by the European Thyroid Association. Eur J Endocrinol 1998;139:584-6. 9. Cobin RH, Gharib H, Bergman DA, Clark OH, Cooper DS, Daniels GH et al. AACE/AAES Medical/Surgical Guidelines for Clinical Practice: Management of Thyroid Carcinoma. Endocrine Pract 2001;7:203-20. 10. Ladenson PW, Singer PA, Ain KB, Bagchi N, Bigos ST, Levy EG et al. American Thyroid Association Guidelines for detection of thyroid dysfunction. Arch Intern Med 2000;160:1573-5. 11. Brandi ML, Gagel RJ, Angeli A, Bilezikian JP, Beck-Peccoz P, Bordi C et al. Consensus Guidelines for Diagnosis and Therapy of MEN Type 1 and Type 2. J Clin Endocrinol Metab 2001;86:5658-71. 12. Werner and Ingbar’s “The Thyroid”. A Fundamental and Clinical Text. Lippincott-Raven, Philadelphia 2000. Braverman LE and Utiger RD eds. 13. DeGroot LJ, Larsen PR, Hennemann G, eds. The Thyroid and Its Diseases. (www.thyroidmanager.org) 2000. 14. Piketty ML, D’Herbomez M, Le Guillouzic D, Lebtahi R, Cosson E, Dumont A et al. Clinical comparison of three labeled-antibody immunoassays of free triiodothyronine. Clin Chem 1996;42:933-41. 15. Sapin R, Schlienger JL, Goichot B, Gasser F and Grucker D. Evaluation of the Elecsys free triiodothyronine assay; relevance of age-related reference ranges. Clin Biochem 1998;31:399-404. 16. Robbins J. Thyroid hormone transport proteins and the physiology of hormone binding. In “Hormones in Blood”. Academic Press, London 1996. Gray CH, James VHT, eds. pp 96-110. 17. Demers LM. Thyroid function testing and automation. J Clin Ligand Assay 1999;22:38-41. 18. Hollowell JG, Staehling NW, Hannon WH, Flanders WD, Gunter EW, Spencer CA et al. Serum thyrotropin, thyroxine and thyroid antibodies in the United States population (1988 to 1994): NHANES III. J Clin Endocrinol Metab 2002;87:489-99. 19. Wardle CA, Fraser WD and Squire CR. Pitfalls in the use of thyrotropin concentration as a first-line thyroid-function test. Lancet 2001;357:1013-4. 20. Spencer CA, LoPresti JS, Patel A, Guttler RB, Eigen A, Shen D et al. Applications of a new chemiluminometric thyrotropin assay to subnormal measurement. J Clin Endocrinol Metab 1990;70:453-60. 21. Meikle, A. W., J. D. Stringham, M. G. Woodward and J. C. Nelson. Hereditary and environmental influences on the variation of thyroid hormones in normal male twins. J Clin Endocrinol Metab1 1988;66:588-92.22. Andersen S, Pedersen KM, Bruun NH and Laurberg P. Narrow individual variations in serum T4 and T3 in normal subjects: a clue to the understanding of subclinical thyroid disease. J Clin Endocrinol Metab 2002;87:1068-72. 23. Cooper, D. S., R. Halpern, L. C. Wood, A. A. Levin and E. V. Ridgway. L-thyroxine therapy in subclinical hypothyroidism. Ann Intern Med 1984;101:18-24. 24. Biondi B, Fazio E, Palmieri EA, Carella C, Panza N, Cittadini A et al. Left ventricular diastolic dysfunction in patients with subclinical hypothyroidism. J Clin Endocrinol Metab 1999;2064-7. 25. Hak AE, Pols HAP, Visser TJ, Drexhage HA, Hofman A and Witteman JCM. Subclinical Hypothyroidism is an independent risk factor for atherosclerosis and myocardial infarction in elderly women: the Rotterdam Study. Ann Intern Med 2000;132:270-8. 26. Michalopoulou G, Alevizaki M, Piperingos G, Mitsibounas D, Mantzos E, Adamopoulos P et al. High serum cholesterol levels in persons with ‘high-normal’ TSH levels: should one extend the definition of subclinical hypothyroidism? Eur J Endocrinol 1998;138:141-5. 27. Beck-Peccoz P, Brucker-Davis F, Persani L, Smallridge RC and Weintraub BD. Thyrotropin-secreting pituitary tumors. Endocrine Rev 1996;17:610-38. 28. Brucker-Davis F, Oldfield EH, Skarulis MC, Doppman JL and Weintraub BD. Thyrotropin-secreting pituitary tumors: diagnostic criteria, thyroid hormone sensitivity and treatment outcome in 25 patients followed at the National Institutes of Health. J Clin Endocrinol Metab 76 1999;:1089-94. 29. Oliveira JH, Persani L, Beck-Peccoz P and Abucham J. Investigating the paradox of hypothyroidism and increased serum thyrotropin (TSH) levels in Sheehan’s syndrome: characterization of TSH carbohydrate content and bioactivity. J Clin Endocrinol Metab 2001;86:1694-9. 30. Uy H, Reasner CA and Samuels MH. Pattern of recovery of the hypothalamic-pituitary thyroid axis following radioactive iodine therapy in patients with Graves’ disease. Amer J Med 1995;99:173-9. 31. Hershman JM, Pekary AE, Berg L, Solomon DH and Sawin CT. Serum thyrotropin and thyroid hormone levels in elderly and middle-aged euthyroid persons. J Am Geriatr Soc 1993;41:823-8. 32. Fraser CG. Age-related changes in laboratory test results. Clinical applications. Drugs Aging 1993;3:246-57. 33. Fraser CG. 2001. Biological Variation: from principles to practice. AACC Press, Washington DC. 34. Drinka PJ, Siebers M and Voeks SK. Poor positive predictive value of low sensitive thyrotropin assay levels for hyperthyroidism in nursing home residents. South Med J 1993;86:1004-7. 35. Vanderpump MPJ, Tunbridge WMG, French JM, Appleton D, Bates D, Rodgers H et al. The incidence of thyroid disorders in the community; a twenty year follow up of the Whickham survey. Clin Endocrinol 1995;43:55-68. 36. Sawin CT, Geller A, Kaplan MM, Bacharach P, Wilson PW, Hershman JM et al. Low serum thyrotropin (thyroid stimulating hormone) in older persons without hyperthyroidism. Arch Intern Med 1991;151:165-8. 37. Parle JV, Maisonneuve P, Sheppard MC, Boyle P and Franklyn JA. Prediction of all-cause and cardiovascular mortality in elderly people from one low serum thyrotropin result: a 10-year study. Lancet 2001;358:861-5. 38. Nelson JC, Clark SJ, Borut DL, Tomei RT and Carlton EI. Age-related changes in serum free thyroxine during childhood and adolescence. J Pediatr 1993;123:899-905. 39. Adams LM, Emery JR, Clark SJ, Carlton EI and Nelson JC. Reference ranges for newer thyroid function tests in premature infants. J Pediatr 1995;126:122-7. 40. Lu FL, Yau KI, Tsai KS, Tang JR, Tsao PN and Tsai WY. Longitudinal study of serum free thyroxine and thyrotropin levels by chemiluminescent immunoassay during infancy. T’aiwan Erh K’o i Hseh Hui Tsa Chih 1999;40:255-7. 41. Zurakowski D, Di Canzio J and Majzoub JA. Pediatric reference intervals for serum thyroxine, triiodothyronine, thyrotropin and free thyroxine. Clin Chem 1999;45:1087-91. 42. Fisher DA, Nelson JC, Carlton Ei and Wilcox RB. Maturation of human hypothalamic-pituitary-thyroid function and control. Thyroid 2000;10:229-34. 43. Fisher DA, Schoen EJ, La Franchi S, Mandel SH, Nelson JC, Carlton EI and Goshi JH. The hypothalamic-pituitary-thyroid negative feedback control axis in children with treated congenital hypothyroidism. J Clin Endocrinol Metab 2000;85:2722-7.44. Penny R, Spencer CA, Frasier SD and Nicoloff JT. Thyroid stimulating hormone (TSH) and thyroglobulin (Tg) levels decrease with chronological age in children and adolescents. J Clin Endocrinol Metab 1983;56:177-80. 45. Verheecke P. Free triiodothyronine concentration in serum of 1050 euthyroid children is inversely related to their age. Clin Chem 1997;43:963-7. 46. Glinoer D, De Nayer P, Bourdoux P, Lemone M, Robyn C, van Steirteghem A et al. Regulation of maternal thyroid function during pregnancy. J Clin Endocrinol Metab 1990;71:276-87. 47. Glinoer D. The regulation of thyroid function in pregnancy: pathways of endocrine adaptation from physiology to pathology. Endocrinol Rev 1997;18:404-33. 48. Weeke J, Dybkjaer L, Granlie K, Eskjaer Jensen S, Kjaerulff E, Laurberg P et al. A longitudinal study of serum TSH and total and free iodothyronines during normal pregnancy. Acta Endocrinol 1982;101:531-7. 49. Pedersen KM, Laurberg P, Iversen E, Knudsen PR, Gregersen HE, Rasmussen OS et al. Amelioration of some pregnancy associated variation in thyroid function by iodine supplementation. J Clin Endocrinol Metab 1993;77:1078-83. 50. Nohr SB, Jorgensen A, Pedersen KM and Laurberg P. Postpartum thyroid dysfunction in pregnant thyroid peroxidase antibody-positive women living in an area with mild to moderate iodine deficiency: Is iodine supplementation safe? J Clin Endocrinol Metab 2000;85:3191-8. 51. Panesar NS, Li CY and Rogers MS. Reference intervals for thyroid hormones in pregnant Chinese women. Ann Clin Biochem 2001;38:329-32. 52. Nissim M, Giorda G, Ballabio M, D’Alberton A, Bochicchio D, Orefice R et al. Maternal thyroid function in early and late pregnancy. Horm Res 1991;36:196-202. 53. Talbot JA, Lambert A, Anobile CJ, McLoughlin JD, Price A, Weetman AP et al. The nature of human chorionic gonadotrophin glycoforms in gestational thyrotoxicosis. Clin Endocrinol 2001;55:33-9. 54. Jordan V, Grebe SK, Cooke RR, Ford HC, Larsen PD, Stone PR et al. Acidic isoforms of chorionic gonadotrophin in European and Samoan women are associated with hyperemesis gravidarum and may be thyrotrophic. Clin Endocrinol 1999;50:619-27. 55. Goodwin TM, Montoro M, Mestman JH, Pekary AE and Hershman JM. The role of chorionic gonadotropin in transient hyperthyroidism of hyperemesis gravidarum. J Clin Endocrinol Metab 1992;75:1333-7. 56. Hershman JM. Human chorionic gonadotropin and the thyroid: hyperemesis gravidarum and trophoblastic tumors. Thyroid 1999;9:653-7. 57. McElduff A. Measurement of free thyroxine (T4) in pregnancy. Aust NZ J Obst Gynecol 1999;39:158-61. 58. Christofides, N., Wilkinson E, Stoddart M, Ray DC and Beckett GJ. Assessment of serum thyroxine binding capacity-dependent biases in free thyroxine assays. Clin Chem 1999;45:520-5. 59. Roti E, Gardini E, Minelli R, Bianconi L, Flisi M,. Thyroid function evaluation by different commercially available free thyroid hormone measurement kits in term pregnant women and their newborns. J Endocrinol Invest 1991;14:1-9. 60. Stockigt JR. Free thyroid hormone measurement: a critical appraisal. Endocrinol Metab Clin N Am 2001;30:265-89. 61. Mandel SJ, Larsen PR, Seely EW and Brent GA. Increased need for thyroxine during pregnancy in women with primary hypothyroidism. NEJM 1990;323:91-6. 62. Burrow GN, Fisher DA and Larsen PR. Maternal and fetal thyroid function. N Engl J Med 1994;331:1072-8. 63. Pop VJ, De Vries E, Van Baar AL, Waelkens JJ, De Rooy HA, Horsten M et al. Maternal thyroid peroxidase antibodies during pregnancy: a marker of impaired child development? J Clin Endocrinol Metab 1995;80:3561-6. 64. Haddow JE, Palomaki GE, Allan WC, K. G. Williams JR, Gagnon J, O’Heir CE et al. Maternal thyroid deficiency during pregnancy and subsequent neuropsychological development of the child. NEJM 1999;341:549-55. 65. Pop VJ, Kuijpens JL, van Baar AL, Verkerk G, van Son MM, de Vijlder JJ et al. Low maternal free thyroxine concentrations during early pregnancy are associated with impaired psychomotor development in infancy. Clin Endocrinol 1999;50:147-8.66. Radetti G, Gentili L, Paganini C, Oberhofer R, Deluggi I and Delucca A. Psychomotor and audiological assessment of infants born to mothers with subclinical thyroid dysfunction in early pregnancy. Minerva Pediatr 2000;52:691-8. 67. Surks MI and Sievert R. Drugs and thyroid function. NEJM 1995;333:1688-94. 68. Kailajarvi M, Takala T, Gronroos P, Tryding N, Viikari J, Irjala K et al. Reminders of drug effects on laboratory test results. Clin Chem 2000;46:1395-1400. 69. Brabant A, Brabant G, Schuermeyer T, Ranft U, Schmidt FW, Hesch RD et al. The role of glucocorticoids in the regulation of thyrotropin. Acta Endocrinol 1989;121:95-100. 70. Samuels MH and McDaniel PA. Thyrotropin levels during hydrocortisone infusions that mimic fasting-induced cortisol elevations: a clinical research center study. J Clin Endocrinol Metab 1997;82:3700-4. 71. Kaptein EM, Spencer CA, Kamiel MB and Nicoloff JT. Prolonged dopamine administration and thyroid hormone economy in normal and critically ill subjects. J Clin Endocrinol Metab 1980;51:387-93. 72. Geffner DL and Hershman JM. Beta-adrenergic blockade for the treatment of hyperthyroidism. Am J Med 1992;93:61-8. 73. Meurisse M, Gollogly MM, Degauque C, Fumal I, Defechereux T and Hamoir E. Iatrogenic thyrotoxicosis: causal circumstances, pathophysiology and principles of treatment- review of the literature. World J Surg 2000;24:1377-85. 74. Martino E, Aghini-Lombardi F, Mariotti S, Bartelena L, Braverman LE and Pinchera A. Amiodarone: a common source of iodine-induced thyrotoxicosis. Horm Res 1987;26:158-71. 75. Martino E, Bartalena L, Bogazzi F and Braverman LE. The effects of amiodarone on the Thyroid. Endoc Rev 2001;22:240-54. 76. Daniels GH. Amiodarone-induced thyrotoxicosis. J Clin Endocrinol Metab 2001;86:3-8. 77. Harjai KJ and Licata AA. Effects of amiodarone on thyroid function. Ann Intern Med 1997;126:63-73. 78. Caron P. Effect of amiodarone on thyroid function. Press Med 1995;24:1747-51. 79. Bartalena L, Grasso L, Brogioni S, Aghini-Lombardi F, Braverman LE and Martino E. Serum interleukin-6 in amiodarone-induced thyrotoxicosis. J Clin Endocrinol Metab 1994;78:423-7. 80. Eaton SE, Euinton HA, Newman CM, Weetman AP and Bennet WM. Clinical experience of amiodarone-induced thyrotoxicosis over a 3-year period: role of colour-flow Doppler sonography. Clin Endocrinol 2002;56:33-8. 81. Lazarus JH. The effects of lithium therapy on thyroid and thyrotropin-releasing hormone. Thyroid 1998;8:909-13. 82. Kusalic M and Engelsmann F. Effect of lithium maintenance therapy on thyroid and parathyroid function. J Psych Neurosci 1999;24:227-33. 83. Oakley PW, Dawson AH and Whyte IM. Lithium: thyroid effects and altered renal handling. Clin Toxicol 2000;38:333-7. 84. Mendel CM, Frost PH, Kunitake ST and Cavalieri RR. Mechanism of the heparin-induced increase in the concentration of free thyroxine in plasma. J Clin Endocrinol Metab 1987;65:1259-64. 85. Iitaka M, Kawasaki S, Sakurai S, Hara Y, Kuriyama R, Yamanaka K et al. Serum substances that interfere with thyroid hormone assays in patients with chronic renal failure. Clin Endocrinol 1998;48:739-46. 86. Bowie LJ, Kirkpatrick PB and Dohnal JC. Thyroid function testing with the TDx: Interference from endogenous fluorophore. Clin Chem 1987;33:1467. 87. DeGroot LJ and Mayor G. Admission screening by thyroid function tests in an acute general care teaching hospital. Amer J Med 1992;93:558-64. 88. Kaptein EM. Thyroid hormone metabolism and thyroid diseases in chronic renal failure. Endocr Rev 1996;17:45-63. 89. Van den Berghe G, De Zegher F and Bouillon R. Acute and prolonged critical illness as different neuroendocrine paradigms. J Clin Endocrinol Metab 1998;83:1827-34. 90. Van den Berhe G. Novel insights into the neuroendocrinology of critical illness. Eur J Endocrinol 2000;143:1-13. 91. Wartofsky L and Burman KD. Alterations in thyroid function in patients with systemic illness: the “euthyroid sick syndrome”. Endocrinol Rev 1982;3:164-217.92. Spencer CA, Eigen A, Duda M, Shen D, Qualls S, Weiss S et al. Sensitive TSH tests – specificity limitations for screening for thyroid disease in hospitalized patients. Clin Chem 1987;33:1391-1396. 93. Stockigt JR. Guidelines for diagnosis and monitoring of thyroid disease: nonthyroidal illness. Clin Chem 1996;42:188-92. 94. Nelson JC and Weiss RM. The effects of serum dilution on free thyroxine (T4) concentration in the low T4 syndrome of nonthyroidal illness. J Clin Endocrinol Metab 1985;61:239-46. 95. Chopra IJ, Huang TS, Beredo A, Solomon DH, Chua Teco GN. Serum thyroid hormone binding inhibitor in non thyroidal illnesses. Metabolism 1986;35:152-9. 96. Wang R, Nelson JC and Wilcox RB. Salsalate administration – a potential pharmacological model of the sick euthyroid syndrome. J Clin Endocrinol Metab 1998;83:3095-9. 97. Sapin R, Schliener JL, Kaltenbach G, Gasser F, Christofides N, Roul G et al. Determination of free triiodothyronine by six different methods in patients with non-thyroidal illness and in patients treated with amiodarone. Ann Clin Biochem 1995;32:314-24. 98. Docter R, van Toor H, Krenning EP, de Jong M and Hennemann G. Free thyroxine assessed with three assays in sera of patients with nonthyroidal illness and of subjects with abnormal concentrations of thyroxine-binding proteins. Clin Chem 1993;39:1668-74. 99. Wilcox RB, Nelson JC and Tomei RT. Heterogeneity in affinities of serum proteins for thyroxine among patients with non-thyroidal illness as indicated by the serum free thyroxine response to serum dilution. Eur J Endocrinol 1994;131:9-13. 100. Liewendahl K, Tikanoja S, Mahonen H, Helenius T, Valimaki M and Tallgren LG. Concentrations of iodothyronines in serum of patients with chronic renal failure and other nonthyroidal illnesses: role of free fatty acids. Clin Chem 1987;33:1382-6. 101. Sapin R, Schlienger JL,Gasser F, Noel E, Lioure B, Grunenberger F. Intermethod discordant free thyroxine measurements in bone marrow-transplanted patients. Clin Chem 2000;46:418-22. 102. Chopra IJ. Simultaneous measurement of free thyroxine and free 3,5,3′-triiodothyronine in undiluted serum by direct equilibrium dialysis/radioimmunoassay: evidence that free triiodothyronine and free thyroxine are normal in many patients with the low triiodothyronine syndrome. Thyroid 1998;8:249-57. 103. Hamblin PS, Dyer SA, Mohr VS, Le Grand BA, Lim C-F, Tuxen DB, Topliss DJ and Stockigt JR. Relationship between thyrotropin and thyroxine changes during recovery from severe hypothyroxinemia of critical illness. J Clin Endocrinol Metab 1986;62:717-22. 104. Brent GA and Hershman JM. Thyroxine therapy in patients with severe nonthyroidal illnesses and low serum thyroxine concentrations. J Clin Endocrinol Metab 1986;63:1-8. 105. De Groot LJ. Dangerous dogmas in medicine: the nonthyroidal illness syndrome. J Clin Endocrinol Metab 1999;84:151-64. 106. Burman KD and Wartofsky L. Thyroid function in the intensive care unit setting. Crit Care Clin 2001;17:43-57. 107. Behrend EN, Kemppainen RJ and Young DW. Effect of storage conditions on cortisol, total thyroxine and free thyroxine concentrations in serum and plasma of dogs. J Am Vet Med Assoc 1998;212:1564-8. 108. Oddie TH, Klein AH, Foley TP and Fisher DA. Variation in values for iodothyronine hormones, thyrotropin and thyroxine binding globulin in normal umbilical-cord serum with season and duration of storage. Clin Chem 1979;25:1251-3. 109. Koliakos G, Gaitatzi M and Grammaticos P. Stability of serum TSH concentration after non refrigerated storage. Minerva Endocrinol 1999;24:113-5. 110. Waite KV, Maberly GF and Eastman CJ. Storage conditions and stability of thyrotropin and thyroid hormones on filter paper. Clin Chem 1987;33:853-5. 111. Levinson SS. The nature of heterophilic antibodies and their role in immunoassay interference. J Clin Immunoassay 1992;15:108-15. 112. Norden AGM, Jackson RA, Norden LE, Griffin AJ, Barnes MA and Little JA. Misleading results for immunoassays of serum free thyroxine in the presence of rheumatoid factor. Clin Chem 1997;43:957-62. 113. Covinsky M, Laterza O, Pfeifer JD, Farkas-Szallasi T and Scott MG. Lambda antibody to Esherichia coli produces false-positive results in multiple immunometric assays. Clin Chem 2000;46:1157-61.114. Martel J, Despres N, Ahnadi CE, Lachance JF, Monticello JE, Fink G, Ardemagni A, Banfi G, Tovey J, Dykes P, John R, Jeffery J and Grant AM. Comparative multicentre study of a panel of thyroid tests using different automated immunoassay platforms and specimens at high risk of antibody interference. Clin Chem Lab Med 2000;38:785-93. 115. Howanitz PJ, Howanitz JH, Lamberson HV and Ennis KM. Incidence and mechanism of spurious increases in serum Thyrotropin. Clin Chem 1982;28:427-31. 116. Boscato, L. M. and M. C. Stuart. Heterophilic antibodies: a problem for all immunoassays. Clin Chem 1988;34:27-33. 117. Kricka LJ. Human anti-animal antibody interference in immunological assays. Clin Chem 1999;45:942-56. 118. Sapin R and Simon C. False hyperprolactinemia corrected by the use of heterophilic antibody-blocking agent. Clin Chem 2001;47:2184-5. 119. Feldt-Rasmussen U, Petersen PH, Blaabjerg O and Horder M. Long-term variability in serum thyroglobulin and thyroid related hormones in healthy subjects. Acta Endocrinol (Copenh) 1980;95:328-34. 120. Browning MCK, Ford RP, Callaghan SJ and Fraser CG. Intra-and interindividual biological variation of five analytes used in assessing thyroid function: implications for necessary standards of performance and the interpretation of results. Clin Chem 1986;32:962-6. 121. Lum SM and Nicoloff JT. Peripheral tissue mechanism for maintenance of serum triiodothyronine values in a thyroxine-deficient state in man. J Clin Invest 1984;73:570-5. 122. Spencer CA and Wang CC. Thyroglobulin measurement:- Techniques, clinical benefits and pitfalls. Endocrinol Metab Clin N Amer 1995;24:841-63. 123. Weeke J and Gundersen HJ. Circadian and 30 minute variations in serum TSH and thyroid hormones in normal subjects. Acta Endocrinol 1978;89:659-72. 124. Brabant G, Prank K, Hoang-Vu C and von zur Muhlen A. Hypothalamic regulation of pulsatile thyrotropin secretion. J Clin Endocrinol Metab 1991;72:145-50. 125. Fraser CG, Petersen PH, Ricos C and Haeckel R. Proposed quality specifications for the imprecision and inaccuracy of analytical systems for clinical chemistry. Eur J Clin Chem Biochem 1992;30:311-7. 126. Rodbard, D. Statistical estimation of the minimal detectable concentration (“sensitivity”) for radioligand assays. Anal Biochem 1978;90:1-12. 127. Ekins R and Edwards P. On the meaning of “sensitivity”. Clin Chem 1997;43:1824-31. 128. Fuentes-Arderiu X and Fraser CG. Analytical goals for interference. Ann Clin Biochem 1991;28:393-5. 129. Petersen PH, Fraser CG, Westgard JO and Larsen ML. Analytical goal-setting for monitoring patients when two analytical methods are used. Clin Chem 1992;38:2256-60. 130. Fraser CG and Petersen PH. Desirable standards for laboratory tests if they are to fulfill medical needs. Clin Chem 1993;39:1453-5. 131. Stockl D, Baadenhuijsen H, Fraser CG, Libeer JC, Petersen PH and Ricos C. Desirable routine analytical goals for quantities assayed in serum. Discussion paper from the members of the external quality assessment (EQA) Working Group A on analytical goals in laboratory medicine. Eur J Clin Chem Clin Biochem 1995;33:157-69. 132. Plebani M, Giacomini A, Beghi L, de Paoli M, Roveroni G, Galeotti F, Corsini A and Fraser CG. Serum tumor markers in monitoring patients: interpretation of results using analytical and biological variation. Anticancer Res 1996;16:2249-52. 133. Browning MC, Bennet WM, Kirkaldy AJ and Jung RT. Intra-individual variation of thyroxin, triiodothyronine and thyrotropin in treated hypothyroid patients: implications for monitoring replacement therapy. Clin Chem 1988;34:696-9. 134. Harris EK. Statistical principles underlying analytic goal-setting in clinical chemistry. Am J Clin Pathol 1979;72:374-82. 135. Nelson JC and Wilcox RB. Analytical performance of free and total thyroxine assays. Clin Chem 1996;42:146-54. 136. Evans SE, Burr WA and Hogan TC. A reassessment of 8-anilino-1-napthalene sulphonic acid as a thyroxine binding inhibitor in the radioimmunoassay of thyroxine. Ann Clin Biochem 1977;14:330-4.137. Karapitta CD, Sotiroudis TG, Papadimitriou A and Xenakis A. Homogeneous enzyme immunoassay for triiodothyronine in serum. Clin Chem 2001;47:569-74. 138. De Brabandere VI, Hou P, Stockl D, Theinpont LM and De Leenheer AP. Isotope dilution-liquid chromatography/electrospray ionization-tandem mass spectrometry for the determination of serum thyroxine as a potential reference method. Rapid Commun Mass Spectrom 1998;12:1099-103. 139. Tai SSC, Sniegoski LT and Welch MJ. Candidate reference method for total thyroxine in human serum: Use of isotope-dilution liquid chromatography-mass spectrometry with electrospray ionization. Clin Chem 2002;48:637-42. 140. Thienpont LM, Fierens C, De Leenheer AP and Przywara L. Isotope dilution-gas chromatography/mass spectrometry and liquid chromatography/electro-spray ionization-tandem mass spectrometry for the determination of triiodo-L-thyronine in serum. Rapid Commun Mass Spectrom 1999;13:1924-31. 141. Sarne DH, Refetoff S, Nelson JC and Linarelli LG. A new inherited abnormality of thyroxine-binding globulin (TBG-San Diego) with decreased affinity for thyroxine and triiodothyronine. J Clin Endocrinol Metab 1989;68:114-9. 142. Schussler GC. The thyroxine-binding proteins. Thyroid 2000;10:141-9. 143. Beck-Peccoz P, Romelli PB, Cattaneo MG, Faglia G, White EL, Barlow JW et al. Evaluation of free T4 methods in the presence of iodothyronine autoantibodies. J Clin Endocrinol Metab 1984;58:736-9. 144. Sakata S, Nakamura S and Miura K. Autoantibodies against thyroid hormones or iodothyronine. Ann Intern Med 1985;103:579-89. 145. Despres N and Grant AM. Antibody interference in thyroid assays: a potential for clinical misinformation. Clin Chem 1998;44:440-54. 146. Hay ID, Bayer MF, Kaplan MM, Klee GG, Larsen PR and Spencer CA. American Thyroid Association Assessment of Current Free Thyroid Hormone and Thyrotropin Measurements and Guidelines for Future Clinical Assays. Clin Chem 1991;37:2002 – 2008. 147. Ekins R. The science of free hormone measurement. Proc UK NEQAS Meeting 1998;3:35-59. 148. Wang R, Nelson JC, Weiss RM and Wilcox RB. Accuracy of free thyroxine measurements across natural ranges of thyroxine binding to serum proteins. Thyroid 2000;10:31-9. 149. Nelson JC, Wilcox BR and Pandian MR. Dependence of free thyroxine estimates obtained with equilibrium tracer dialysis on the concentration of thyroxine-binding globulin. Clin Chem 1992;38:1294-1300. 150. Ekins R. The free hormone hypothesis and measurement of free hormones. Clin Chem 1992;38:1289-93. 151. Ekins RP. Ligand assays: from electrophoresis to miniaturized microarrays. Clin Chem 1998;44:2015-30. 152. Ekins R. Analytic measurements of free thyroxine. Clin Lab Med 1993;13:599-630. 153. Nusynowitz, M. L. Free-thyroxine index. JAMA 1975;232:1050. 154. Larsen PR, Alexander NM, Chopra IJ, Hay ID, Hershman JM, Kaplan MM et al. Revised nomenclature for tests of thyroid hormones and thyroid-related proteins in serum. J Clin Endocrinol Metab 1987;64:1089-94. 155. Burr WA, Evans SE, Lee J, Prince HP, Ramsden DB. The ratio of thyroxine to thyroxine-binding globulin measurement in the evaluation of thyroid function. Clin Endocrinol 1979;11:333-42. 156. Attwood EC and Atkin GE. The T4: TBG ratio: a re-evaluation with particular reference to low and high serum TBG levels. Ann Clin Biochem 1982;19:101-3. 157. Szpunar WE, Stoffer SS and DiGiulio W. Clinical evaluation of a thyroxine binding globulin assay in calculation a free thyroxine index in normal, thyroid disease and sick euthyroid patients. J Nucl Med 1987;28:1341-3. 158. Nelson JC and Tomei RT. Dependence of the thyroxin/thyroxin-binding globulin (TBG) ratio and the free thyroxin index on TBG concentrations. Clin Chem 1989;35:541-4. 159. Sterling K and Brenner MA. Free thyroxine in human serum: Simplified measurement with the aid of magnesium precipitation. J Clin Invest 1966;45:153-60. 160. Schulssler GC and Plager JE. Effect of preliminary purification of 131-Thyroxine on the determination of free thyroxine in serum. J Clin Endocrinol 1967;27:242-50. 161. Nelson JC and Tomei RT. A direct equilibrium dialysis/radioimmunoassay method for the measurement of free thyroxin in undiluted serum. Clin Chem 1988;34:1737-44.162. Tikanoja SH. Ultrafiltration devices tested for use in a free thyroxine assay validated by comparison with equilibrium dialysis. Scand J Clin Lab Invest 1990;50:663-9. 163. Ellis SM and Ekins R. Direct measurement by radioimmunoassay of the free thyroid hormone concentrations in serum. Acta Endocrinol (Suppl) 1973;177:106-110. 164. Weeke J and Orskov H. Ultrasensitive radioimmunoassay for direct determination of free triiodothyronine concentration in serum. Scand J Clin Lab Invest 1975;35:237-44. 165. Surks MI, Hupart KH, Chao P and Shapiro LE. Normal free thyroxine in critical nonthyroidal illnesses measured by ultrafiltration of undiluted serum and equilibrium dialysis. J Clin Endocrinol Metab 1988;67:1031-9. 166. Holm SS andreasen L, Hansen SH, Faber J and Staun-Olsen P. Influence of adsorption and deproteination on potential free thyroxine reference methods. Clin Chem 2002;48:108-114. 167. Jaume JC, Mendel CM, Frost PH,Greenspan FS, Laughton CW. Extremely low doses of heparin release lipase activity into the plasma and can thereby cause artifactual elevations in the serum-free thyroxine concentrations as measured by equilibrium dialysis. Thyroid 1996;6:79-83. 168. Stevenson HP, Archbold GP, Johnston P, Young IS, Sheridan B. Misleading serum free thyroxine results during low molecular weight heparin treatment. Clin Chem 1998;44:1002-7. 169. Laji K, Rhidha B, John R, Lazarus J and Davies JS. Artifactual elevations in serum free thyroxine and triiodothyronine concentrations during heparin therapy. QJM 2001;94:471-3. 170. Lim CF, Bai Y, Topliss DJ, Barlow JW and Stockigt JR. Drug and fatty acid effects on serum thyroid hormone binding. J Clin Endocrinol Metab 1988;67:682-8. 171. Czako, G., M. H. Zweig, C. Benson and M. Ruddel. On the albumin-dependence of measurements of free thyroxin. II Patients with non-thyroidal illness. Clin Chem 1987;33:87-92. 172. Csako G, Zwieg MH, Glickman J, Ruddel M and K. J. Direct and indirect techniques for free thyroxin compared in patients with nonthyroidal illness. II. Effect of prealbumin, albumin and thyroxin-binding globulin. Clin Chem 1989;35:1655-62. 173. Csako G, Zweig MH, Glickman J, Kestner J and Ruddel M. Direct and indirect techniques for free thyroxin compared in patients with nonthyroidal illness. I. Effect of free fatty acids. Clin Chem 1989;35:102-9. 174. Ross HA and Benraad TJ. Is free thyroxine accurately measurable at room temperature? Clin Chem 1992;38:880-6. 175. Van der Sluijs Veer G, Vermes I, Bonte HA and Hoorn RKJ. Temperature effects on Free Thyroxine Measurement: Analytical and Clinical Consequences. Clin Chem 1992;38:1327-31. 176. Fisher DA. The hypothyroxinemia of prematurity. J Clin Endocrinol Metab 1997;82:1701-3. 177. Stockigt JR, Stevens V, White EL and Barlow JW. Unbound analog radioimmunoassays for free thyroxin measure the albumin-bound hormone fraction. Clin Chem 1983;29:1408-10. 178. Aravelo G. Prevalence of familial dysalbuminemic hyperthyroxinemia in serum samples received for thyroid testing. Clin Chem 1991;37:1430-1. 179. Sapin R and Gasser F. Anti-solid phase antibodies interfering in labeled-antibody assays for free thyroid hormones. Clin Chem 1995;45:1790-1. 180. Inada M and Sterling K. Thyroxine transport in thyrotoxicosis and hypothyroidism. J Clin Invest 1967;46:1442-50. 181. Lueprasitsakul W, Alex S, Fang SL, Pino S, Irmscher K, Kohrle J et al. Flavonoid administration immediately displaces thyroxine (T4) from serum transthyretin, increases serum free T4 and decreases serum thyrotropin in the rat. Endocrinol 1990;126:2890-5. 182. Stockigt JR, Lim CF, Barlow J, Stevens V, Topliss DJ, Wynne KN. High concentrations of furosemide inhibit plasma binding of thyroxine. J Clin Endocrinol Metab 1984;59:62-6. 183. Hawkins RC. Furosemide interference in newer free thyroxine assays. Clin Chem 1998;44:2550-1. 184. Wang R, Nelson JC and Wilcox RB. Salsalate and salicylate binding to and their displacement of thyroxine from thyroxine-binding globulin, transthyrin and albumin. Thyroid 1999;9:359-64. 185. Munro SL, Lim C-F, Hall JG, Barlow JW, Craik DJ, Topliss DJ and Stockigt JR. Drug competition for thyroxine binding to transthyretin (prealbumin): comparison with effects on thyroxine-binding globulin. J Clin Endocrinol Metab 1989;68:1141-7. 186. Stockigt JR, Lim C-F, Barlow JW and Topliss DJ. 1997. Thyroid hormone transport. Springer Verlag, Heidelberg. 119 pp.187. Surks MI and Defesi CR. Normal free thyroxine concentrations in patients treated with phenytoin or carbamazepine: a paradox resolved. JAMA 1996;275:1495-8. 188. Ross HA. A dialysis method for the measurement of free iodothyronine and steroid hormones in blood. Experientia 1978;34:538-9. 189. Sapin R. Serum thyroxine binding capacity-dependent bias in five free thyroxine immunoassays: assessment with serum dilution experiments and impact on diagnostic performance. Clin Biochem 2001;34:367-71. 190. Law LK, Cheung CK and Swaminathan R. Falsely high thyroxine results by fluorescence polarization in sera with high background fluorescence. Clin Chem 1988;34:1918. 191. Kricka LJ. Interferences in Immunoassay – still a threat. Clin Chem 2000;46:1037-8. 192. McBride JH, Rodgerson DO and Allin RE. Choriogonadotrophin interference in a sensitive assay for Thyrotropin. Clin Chem 1987;33:1303-4. 193. Ritter D, Stott R, Grant N and Nahm MH. Endogenous antibodies that interfere with Thyroxine fluorescence polarization assay but not with radioimmunoassay or EMIT. Clin Chem 1993;39:508-11. 194. DeGroot LJ, Larsen PR, Refetoff S and Stanbury JB. The Thyroid and its Diseases. Fifth Edition, 1984;John Wiley & Sons, Inc., New York:266-7. 195. Beck-Peccoz P, Amr S, Menezes-Ferreira NM, Faglia G and Weintraub BD. Decreased receptor binding of biologically inactive thyrotropin in central hypothyroidism: effect of treatment with thyrotropin-releasing hormone. N Engl J Med 1985;312:1085-90. 196. Beck-Peccoz P and Persani L. Variable biological activity of thyroid-stimulating hormone. Eur J Endocrinol 1994;131:331-40. 197. Persani L, Ferretti E, Borgato S, Faglia G and Beck-Peccoz P. Circulating thyrotropin bioactivity in sporadic central hypothyroidism. J Clin Endocrinol Metab 2000;85:3631-5. 198. Rafferty B and Gaines Das R. Comparison of pituitary and recombinant human thyroid-stimulating hormone (rhTSH) in a multicenter collaborative study: establishment of the first World Health Organization reference reagent for rhTSH. Clin Chem 1999;45:2207-15. 199. Persani L, Borgato S, Romoli R, Asteria C, Pizzocaro A and Beck-Peccoz P. Changes in the degree of sialylation of carbohydrate chains modify the biological properties of circulating thyrotropin isoforms in various physiological and pathological states. J Clin Endocrinol Metab 1998;83:2486-92. 200. Gershengorn MC and Weintraub BD. Thyrotropin-induced hyperthyroidism caused by selective pituitary resistance to thyroid hormone. A new syndrome of “inappropriate secretion of TSH”. J Clin Invest 1975;56:633-42. 201. Faglia G, Beck-Peccoz P, Piscitelli G and Medri G. Inappropriate secretion of thyrotropin by the pituitary. Horm Res 1987;26:79-99. 202. Spencer CA, Takeuchi M and Kazarosyan M. Current status and performance goals for serum thyrotropin (TSH) assays. Clinical Chemistry 1996;42:141-145. 203. Laurberg P. Persistent problems with the specificity of immunometric TSH assays. Thyroid 1993;3:279-83. 204. Spencer CA, Schwarzbein D, Guttler RB, LoPresti JS and Nicoloff JT. TRH stimulation test responses employing third and fourth generation TSH assays. J Clin Endocrinol Metab 1993;76:494-498. 205. Vogeser M, Weigand M, Fraunberger P, Fischer H and Cremer P. Evaluation of the ADVIA Centaur TSH-3 assay. Clin Chem Lab Med 2000;38:331-4. 206. Spencer CA, Takeuchi M, Kazarosyn M, MacKenzie F, Beckett GJ and Wilkinson E. Interlaboratory/intermethod differences in functional sensitivity of immunometric assays for thyrotropin (TSH): impact on reliability of measurement of subnormal concentration. Clin Chem 1995;41:367-74. 207. Tunbridge WM, Evered DC, Hall R, Appleton D, Brewis M, Clark F, Evans JG, Young E, Bird T and Smith PA. The spectrum of thyroid disease in a community: the Whickham survey. Clin Endocrinol 1977;7:481-93. 208. Rago T, Chiovato L, Grasso L, Pinchera A and Vitti P. Thyroid ultrasonography as a tool for detecting thyroid autoimmune diseases and predicting thyroid dysfunction in apparently healthy subjects. J Endocrinol Invest 2001;24:763-9.209. Hershman JM and Pittman JA. Utility of the radioimmunoassay of serum thyrotropin in man. Ann Intern Med 1971;74:481-90. 210. Becker DV, Bigos ST, Gaitan E, Morris JC, Rallison ML, Spencer CA, Sugawara M, Middlesworth LV and Wartofsky L. Optimal use of blood tests for assessment of thyroid function. JAMA 1993;269:2736. 211. Canaris GJ, Manowitz NR, Mayor G and Ridgway EC. The Colorado Thyroid Disease Prevalence Study. Arch Intern Med 2000;160:19-27. 212. Skamene A and Patel YC. Infusion of graded concentrations of somatostatin in man: pharmacokinetic and differential inhibitory effects on pituitary and islet hormones. Clin Endocrinol 1984;20:555-64. 213. Berghout A, Wiersinga WM, Smits NJ and Touber JL. Interrelationships between age, thyroid volume, thyroid nodularity and thyroid function in patients with sporadic nontoxic goiter. Am J Med 1990;89:602-8. 214. Parle JV, Franklyn JA, Cross KW, Jones SC and Sheppard MC. Prevalence and follow-up of abnormal thyrotropin (TSH) concentrations in the elderly in the United Kingdom. Clin Endocrinol 1991;34:77-83. 215. Danese D, Sciacchitano S, Farsetti A Andreoli M and Pontecorvi A. Diagnostic accuracy of conventional versus sonography-guided fine-needle aspiration biopsy of thyroid nodules. Thyroid 1998;8:15-21. 216. McDermott MT and Ridgway EC. Subclinical hypothyroidism is mild thyroid failure and should be treated. J Clin Endocrinol Metab 2001;86:4585-90. 217. Chu JW and Crapo LM. The treatment of subclinical hypothyroidism is seldom necessary. J Clin Endocrinol Metab 2001;86:4591-9. 218. Lewis GF, Alessi CA, Imperial JG and Refetoff S. Low serum free thyroxine index in ambulating elderly is due to a resetting of the threshold of thyrotropin feedback suppression. JCEM 1991;73:843-9. 219. Pearce CJ and Himsworth RL. Total and free thyroid hormone concentrations in patients receiving maintenance replacement treatment with thyroxine. Br Med J 1984;288:693-5. 220. Fish LH, Schwarz HL, Cavanaugh MD, Steffes MW, Bantle JP, Oppenheimer JH. Replacement dose, metabolism and bioavailability of levothyroxine in the treatment of hypothyroidism. N Engl J Med 1987;316:764-70. 221. Sawin CT, Herman T, Molitch ME, London MH and Kramer SM. Aging and the thyroid. Decreased requirement for thyroid hormone in older hypothyroid patients. Amer J Med 1983;75:206-9. 222. Davis FB, LaMantia RS, Spaulding SW, Wemann RE and Davis PJ. Estimation of a physiologic replacement dose of levothyroxine in elderly patients with hypothyroidism. Arch Intern Med 1984;144. 223. Arafah BM. Estrogen therapy may necessitate an increase in thyroxine dose for hypothyroidism. NEJM 2001;344:1743-9. 224. Scheithauer BW, Kovacs K, Randall RV and Ryan N. Pituitary gland in hypothyroidism. Histologic and immunocytologic study. Arch Pathol Lab Med 1985;109:499-504. 225. Ain KB, Pucino F, Shiver T and Banks SM. Thyroid hormone levels affected by time of blood sampling in thyroxine-treated patients. Thyroid 1993;3:81-5. 226. Chorazy PA, Himelhoch S, Hopwood NJ, Greger NG and Postellon DC. Persistent hypothyroidism in an infant receiving a soy formula: case report and review of the literature. Pediatrics 1995;96:148-50. 227. Dulgeroff AJ and Hershman JM. Medical therapy for differentiated thyroid carcinoma. Endocrinol Rev 1994;15:500-15. 228. Pujol P, Daures JP, Nsakala N, Baldet L, Bringer J and Jaffiol C. Degree of thyrotropin suppression as a prognostic determinant in differentiated thyroid cancer. J Clin Endocrinol Metab 1996;81:4318-23. 229. Cooper DS, Specker B, Ho M, Sperling M, Ladenson PW, Ross DS, Ain KB, Bigos ST, Brierley JD, Haugen BR, Klein I, Robbins J, Sherman SI, Taylor T and Maxon HR 3rd. Thyrotropin suppression and disease progression in patients with differentiated thyroid cancer: results from the National thyroid Cancer Treatment Cooperative Registry. Thyroid 1999;8:737-44.230. Hurley DL and Gharib H. Evaluation and management of multinodular goiter. Otolaryngol Clin North Am 1996;29:527-40. 231. Bayer MF, Macoviak JA and McDougall IR. Diagnostic performance of sensitive measurements of serum thyrotropin during severe nonthyroidal illness: Their role in the diagnosis of hyperthyroidism. Clin Chem 1987;33:2178-84. 232. Lum SM, Kaptein EM and Nicoloff JT. Influence of nonthyroidal illnesses on serum thyroid hormone indices in hyperthyroidism. West J Med 1983;138:670-5. 233. Faglia G, Bitensky L, Pinchera A, Ferrari C, Paracchi A, Beck-Peccoz P, Ambrosi B and Spada A. Thyrotropin secretion in patient with central hypothyroidism: Evidence for reduced biological activity of immunoreactive thyrotropin. J Clin Endocrinol Metab 1979;48:989-98. 234. Faglia G, Beck-Peccoz P, Ballabio M and Nava C. Excess of beta-subunit of thyrotropin (TSH) in patients with idiopathic central hypothyroidism due to the secretion of TSH with reduced biological activity. J Clin Endocrinol Metab 1983;56:908-14. 235. Faglia G. The clinical impact of the thyrotropin-releasing hormone test. Thyroid 1998;8:903-8. 236. Trejbal D, Sulla I, Trejbalova L, Lazurova I, Schwartz P and Machanova Y. Central hypothyroidism – various types of TSH responses to TRH stimulation. Endocr Regul 1994;28:35-40. 237. Faglia G, Ferrari C, Paracchi A, Spada A and Beck-Peccoz P. Triiodothyronine response to thyrotropin releasing hormone in patients with hypothalamic-pituitary disorders. Clin Endocrinol 1975;4:585-90. 238. Horimoto M, Nishikawa M, Ishihara T, Yoshikawa N, Yoshimura M and Inada M. Bioactivity of thyrotropin (TSH) in patients with central hypothyroidism: comparison between in vivo 3,5,3′-triiodothyronine response to TSH and in vitro bioactivity of TSH. J Clin Endocrinol Metab 1995;80:1124-8. 239. Refetoff S, Weiss RE and Usala SJ. The syndromes of resistance to thyroid hormone. Endocr Rev 1993;14:348-99. 240. Weiss RE, Hayashi Y, Nagaya T, Petty KJ, Murata Y, Tunca H, Seo H and Refetoff S. Dominant inheritance of resistance to thyroid hormone not linked to defects in the thyroid hormone receptors alpha or beta genes may be due to a defective co-factor. J Clin Endocrinol Metab 1996;81:4196-203. 241. Snyder D, Sesser D, Skeels M et al. Thyroid disorders in newborn infants with elevated screening T4. Thyroid 1997;7 (Suppl 1):S1-29 (abst). 242. Refetoff S. 2000. Resistance to Thyroid Hormone. In The Thyroid. Braverman LE and Utiger RD, editor. Lippincott Williams & Wilkins, Philadelphia. 1028-43. 243. Beck-Peccoz P and Chatterjee VKK. The variable clinical phenotype in thyroid hormone resistance syndrome. Thyroid 1994;4:225-32. 244. Persani L, Asteria C, Tonacchera M, Vitti P, Krishna V, Chatterjee K and Beck-Peccoz P. Evidence for the secretion of thyrotropin with enhanced bioactivity in syndromes of thyroid hormone resistance. J Clin Endocrinol Metab 1994;78:1034-9. 245. Sarne DH, Sobieszczyk S, Ain KB and Refetoff S. Serum thyrotropin and prolactin in the syndrome of generalized resistance to thyroid hormone: responses to thyrotrophin-releasing hormone stimulation and triiodothyronine suppression. J Clin Endocrinol Metab 1990;70:1305-11. 246. Ercan-Fang S, Schwartz HL, Mariash CN and Oppenheimer JH. Quantitative assessment of pituitary resistance to thyroid hormone from plots of the logarithm of thyrotropin versus serum free thyroxine index. J Clin Endocrinol Metab 2000;85:2299-303. 247. Safer JD, Colan SD, Fraser LM and Wondisford FE. A pituitary tumor in a patient with thyroid hormone resistance: a diagnostic dilemma. Thyroid 2001;11:281-91. 248. Marcocci C and Chiovato L. 2000. Thyroid -directed antibodies. In Thyroid. B. L. a. U. RD, editor. Lippincott Williams and Wilkins, Philadelphia. 414-31. 249. Chiovato L, Bassi P, Santini F, Mammoli C, Lapi P, Carayon P and Pinchera A. Antibodies producing complement-mediated thyroid cytotoxicity in patients with atrophic or goitrous autoimmune thyroiditis. J Clin Endocrinol Metab 1993;77:1700-5. 250. Guo J, Jaume JC, Rapoport B and McLachlan SM. Recombinant thyroid peroxidase-specific Fab converted to immunoglobulin G (IgG)molecules: evidence for thyroid cell damage by IgG1, but not IgG4, autoantibodies. J Clin Endocrinol Metab 1997;82:925-31.251. Doullay F, Ruf J, Codaccioni JL and Carayon P. Prevalence of autoantibodies to thyroperoxidase in patients with various thyroid and autoimmune diseases. Autoimmunity 1991;9:237-44. 252. Radetti G, Persani L, Moroder W, Cortelazzi D, Gentili L, Beck-Peccoz P. Transplacental passage of anti-thyroid autoantibodies in a pregnant woman with auto-immune thyroid disease. Prenatal Diagnosis 1999;19:468-71. 253. Heithorn R, Hauffa BP and Reinwein D. Thyroid antibodies in children of mothers with autoimmune thyroid disorders. Eur J Pediatr 1999;158:24-8. 254. Feldt-Rasmussen. Anti-thyroid peroxidase antibodies in thyroid disorders and non thyroid autoimmune diseases. Autoimmunity 1991;9:245-51. 255. Mariotti S, Chiovato L, Franceschi C and Pinchera A. Thyroid autoimmunity and aging. Exp Gerontol 1999;33:535-41. 256. Ericsson UB, Christensen SB and Thorell JI. A high prevalence of thyroglobulin autoantibodies in adults with and without thyroid disease as measured with a sensitive solid-phase immunosorbent radioassay. Clin Immunol Immunopathol 1985;37:154-62. 257. Feldt-Rasmussen U, Hoier-Madsen M, Rasmussen NG, Hegedus L and Hornnes P. Anti-thyroid peroxidase antibodies during pregnancy and postpartum. Relation to postpartum thyroiditis. Autoimmunity 1990;6:211-4. 258. Premawardhana LD, Parkes AB, AMMARI F, John R, Darke C, Adams H and Lazarus JH. Postpartum thyroiditis and long-term thyroid status: prognostic influence of Thyroid Peroxidase Antibodies and ultrasound echogenicity. J Clin Endocrinol Metab 2000;85:71-5. 259. Johnston AM and Eagles JM. Lithium-associated clinical hypothyroidism. Prevalence and risk factors. Br. J Psychiatry 1999;175:336-9. 260. Bell TM, Bansal AS, Shorthouse C, Sandford N and Powell EE. Low titre autoantibodies predict autoimmune disease during interferon alpha treatment of chronic hepatitis C. J Gastroenterol Hepatol 1999;14:419-22. 261. Ward DL and Bing-You RG. Autoimmune thyroid dysfunction induced by interfereon-alfa treatment for chronic hepatitis C: screening and monitoring recommendations. Endoc Pract 2001;7:52-8. 262. Carella C, Mazziotti G, Morisco F, Manganella G, Rotondi M, Tuccillo C, Sorvillo F, Caporaso N and Amato G. Long-term outcome of interferon-alpha-induced thyroid autoimmunity and prognostic influence of thyroid autoantibody pattern at the end of treatment. J Clin Endocrinol Metab 2001;86:1925-9. 263. Feldt-Rasmussen U, Schleusener H and Carayon P. Meta-analysis evaluation of the impact of thyrotropin receptor antibodies on long term remission after medical therapy of Graves’ disease. J Clin Endocrinol Metab 1994;78:98-103. 264. Estienne V, Duthoit C, Di Costanzo, Lejeune PJ, Rotondi M, Kornfeld S et al. Multicenter study on TGPO autoantibodies prevalence in various thyroid and non-thyroid diseases: relationships with thyroglobulin and thyroperoxidase autoantibody parameters. Eur J Endocrinol 1999;141:563-9. 265. Czarnocka B, Ruf J, Ferrand M et al. Purification of the human thyroid peroxidase and its identification as the microsomal antigen involved in autoimmune thyroid diseases. FEBS Lett 1985;190:147-52. 266. Mariotti S, Caturegli P, Piccolo P, Barbesino G and Pinchera A. Antithyroid peroxidase autoantibodies in thyroid diseases. J Clin Endocrinol Metab 1990;71:661-9. 267. Rubello D, Pozzan GB, Casara D, Girelli ME, Boccato s, Rigon F, Baccichetti C, Piccolo M, Betterle C and Busnardo B. Natural course of subclinical hypothyroidism in Down’s syndrome: prospective study results and therapeutic considerations. J Endocrinol Invest 1995;18:35-40. 268. Karlsson B, Gustafsson J, Hedov G, Ivarsson SA and Anneren G. Thyroid dysfunction in Down’s syndrome: relation to age and thyroid autoimmunity. Arch Dis Child 1998;79:242-5. 269. Bussen S, Steck T and Dietl J. Increased prevalence of thyroid antibodies in euthyroid women with a history of recurrent in-vitro fertilization failure. Hum Reprod 2000;15:545-8. 270. Phan GQ, Attia P, Steinberg SM, White DE and Rosenberg SA. Factors associated with response to high-dose interleukin-2 in patients with metastatic melanoma. J Clin Oncol 2001;19:3477-82. 271. Durelli L, Ferrero B, Oggero A, Verdun E, Ghezzi A, Montanari E and Zaffaroni M. Thyroid function and autoimmunity during interferon-Beta-1b Treatment: a Multicenter Prospective Study. J Clin Endocrinol Metab 2001;86:3525-32.272. Roti E, Minelli R, Giuberti T, Marchelli C, Schianchi C, Gardini E, Salvi M, Fiaccadori F, Ugolotti G, Neri TM and Braverman LE. Multiple changes in thyroid function in patients with chronic active HCV hepatitis treated with recombinant interferon-alpha. Am J Med 1996;101:482-7. 273. Ruf J, Carayon P and Lissitzky S. Various expression of a unique anti-human thyroglobulin antibody repertoire in normal state and autoimmune disease. Eur J Immunol 1985;15:268-72. 274. Ruf J, Toubert ME, Czarnocka B, Durand-Gorde JM,Ferrand M, Carayon P. Relationship between immunological structure and biochemical properties of human thyroid peroxidase. Endocrinol 1989;125:1211-8. 275. Feldt-Rasmussen U and Rasmussen A K. Serum thyroglobulin (Tg)in presence of thyroglobulin autoantibodies (TgAb). Clinical and methodological relevance of the interaction between Tg and TgAb in vivo and in vitro. J Endocrinol Invest 1985;8:571-6. 276. Spencer CA, Wang C, Fatemi S, Guttler RB, Takeuchi M and Kazarosyan M. Serum Thyroglobulin Autoantibodies: Prevalence, influence on serum thyroglobulin measurement and prognostic significance in patients with differentiated thyroid carcinoma. J Clin Endocrinol Metab 1998;83:1121-7. 277. Pacini F, Mariotti S, Formica N and Elisei R. Thyroid autoantibodies in thyroid cancer: Incidence and relationship with tumor outcome. Acta Endocrinol 1988;119:373-80. 278. Rubello D, Casara D, Girelli ME, Piccolo M and Busnardo B. Clinical meaning of circulating antithyroglobulin antibodies in differentiated thyroid cancer: a prospective study. J Nucl Med 1992;33:1478-80. 279. Nordyke RA, Gilbert FI, Miyamoto LA and Fleury KA. The superiority of antimicrosomal over antithyroglobulin antibodies for detecting Hashimoto’s thyroiditis. Arch Intern Med 1993;153:862-5. 280. Di Cerbo A, Di Paoloa R, Menzaghi C, De Filippis V, Tahara K, Corda D et al. Graves’ immunoglobulins activate phospholipase A2 by recognizing specific epitopes on the thyrotropin receptor. J Clin Endocrinol Metab 1999;84:3283-92. 281. Kung AWC, Lau KS and Kohn LD. Epitope mapping of TSH Receptor-blocking antibodies in Graves’ disease that appear during pregnancy. J Clin Endocrinol Metab 2001;86:3647-53. 282. Ueta Y, Fukui H, Murakami M, Yamanouchi Y, Yamamoto R, Murao A et al. Development of primary hypothyroidism with the appearance of blocking-type antibody to thyrotropin receptor in Graves’ disease in late pregnancy. Thyroid 1999;9:179-82. 283. Gupta MK. Thyrotropin-receptor antibodies in thyroid diseases: advances in detection techniques and clinical application. Clin Chem Acta 2000;293:1-29. 284. Kung AW, Lau KS and Kohn LD. Characterization of thyroid-stimulating blocking antibodies that appeared during transient hypothyroidism after radioactive iodine therapy. Thyroid 2000;10:909-17. 285. Filetti S, Foti D, Costante G and Rapoport B. Recombinant human thyrotropin (TSH) receptor in a radioreceptor assay for the measurement of TSH receptor antibodies. J Clin Endocrinol Metab 1991;72:1096-101. 286. Adams DD and Purves HD. Abnormal responses in the assay of thyrotropin. Proc Univ Otago Med Sch 1956;34:11-12. 287. Morgenthaler NG. New assay systems for thyrotropin receptor antibodies. Current Opinion Endocrinol Diabetes 1998;6:251-60. 288. Kamijo K, Nagata A and Sato Y. Clinical significance of a sensitive assay for thyroid-stimulating antibodies in Graves’ disease using polyethylene glycol at high concentration and porcine thyroid cells. Endocrinol J 1999;46:397-403. 289. Takasu N, Yamashiro K, Ochi Y, Sato Y, Nagata A, Komiya I et al. TSBAb (TSH-Stimulation Blocking Antibody) and TSAb (Thyroid Stimulating Antibody) in TSBAb-positive patients with hypothyroidism and Graves’ patients with hyperthyroidism. Horm Metab Res 2001;33:232-7. 290. Costagliola S, Swillens S, Niccoli P, Dumont JE, Vassart G and Ludgate M. Binding assay for thyrotropin receptor autoantibodies using the recombinant receptor protein. J Clin Endocrinol Metab 1992;75:1540-44. 291. Morgenthaler NG, Hodak K, Seissler J, Steinbrenner H, Pampel I, Gupta M et al. Direct binding of thyrotropin receptor autoantibody to in vitro translated thyrotropin receptor: a comparison to radioreceptor assay and thyroid stimulating bioassay. Thyroid 1999;9:466-75.292. Akamizu T, Inoue D, Kosugi S, Kohn LD and Mori T. Further studies of amino acids (268-304) in thyrotropin (TSH)-lutropin/chorionic gonadotropin (LH/CG) receptor chimeras: Cysteine-301 is important in TSH binding and receptor tertiary structure. Thyroid 1994;4:43-8. 293. Grasso YZ, Kim MR, Faiman C, Kohn LD, Tahara K and Gupta MK. Epitope heterogeneity of thyrotropin-blocking antibodies in Graves’ patients as detected with wild-type versus chimeric thyrotropin receptors. Thyroid 1999;9:521-37. 294. Kim WB, Chung HK, Lee HK, Kohn LD, Tahara K and Cho BY. Changes in epitopes for thyroid stimulation antibodies in Graves’ disease sera during treatment of hyperthyroidism: Therapeutic implications. J Clin Endocrinol Metab 1997;82:1953-9. 295. Shewring G and Smith BR. An improved radioreceptor assay for TSH receptor. Methods Enzymol 1982;17:409-17. 296. Costagliola S, Morganthaler NG, Hoermann R, Badenhoop K, Struck J, Freitag D, Poertl S, Weglohner W, Hollidt JM, Quadbeck B, Dumont JE, Schumm-Draeger PM, Bergmann A, Mann K, Vassart G and Usadel KH. Second generation assay for thyrotropin receptor antibodies has superior diagnostic sensitivity for Graves’ disease. J Clin Endocrinol Metab 1999;84:90-7. 297. Schott M, Feldkamp J, Bathan C, Fritzen R, Scherbaum WA and Seissler J. Detecting TSH-Receptor antibodies with the recombinant TBII assay: Technical and Clinical evaluation. 32 2000;:429-35. 298. Feldt-Rasmussen U. Analytical and clinical performance goals for testing autoantibodies to thyroperoxidase, thyroglobulin and thyrotropin receptor. Clin Chem 1996;42:160-3. 299. Giovanella L, Ceriani L and Garancini S. Clinical applications of the 2nd. generation assay for anti-TSH receptor antibodies in Graves’ disease. Evaluation in patients with negative 1st. generation test. Clin Chem Lab med 2001;39:25-8. 300. Momotani N, Noh JY, Ishikawa N and Ito K. Effects of propylthiouracil and methimazole on fetal thyroid status in mothers with Graves’ hyperthyroidism. J Clin Endocrinol Metab 1997;82:3633-6. 301. Brown RS, Bellisario RL, Botero D, Fournier L, Abrams CA, Cower ML et al. Incidence of transient congenital hypothyroidism due to maternal thyrotropin receptor-blocking antibodies in over one million babies. J Clin Endocrinol Metab 1996;81:1147-51. 302. Gerding MN, van der Meer Jolanda WC, Broenink M, Bakker O, W. WM and Prummel MF. Association of thyrotropin receptor antibodies with the clinical features of Graves’ opthalmopathy. Clin Endocrinol 2000;52:267-71. 303. Bartelena L, Marcocci C, Bogazzi F, Manetti L, Tanda ML, Dell’Unto E et al. Relation between therapy for hyperthyroidism and the course of Graves’ disease. N Engl J Med 1998;338:73-8. 304. Bech K. Immunological aspects of Graves’ disease and importance of thyroid stimulating immunoglobulins. Acta Endocrinol (Copenh) Suppl 1983;103:5-38. 305. Feldt-Rasmussen U. Serum thyroglobulin and thyroglobulin autoantibodies in thyroid diseases. Pathogenic and diagnostic aspects. Allergy 1983;38:369-87. 306. Nygaard B, Metcalfe RA, Phipps J, Weetman AP and Hegedus L. Graves’ disease and thyroid-associated opthalopathy triggered by 131I treatment of non-toxic goitre. J Endocrinol Invest 1999;22:481-5. 307. Ericsson UB, Tegler L, Lennquist S, Christensen SB, Stahl E and Thorell JI. Serum thyroglobulin in differentiated thyroid carcinoma. Acta Chir Scand 1984;150:367-75. 308. Haugen BR, Pacini F, Reiners C, Schlumberger M, Ladenson PW, Sherman SI, Cooper DS, Graham KE, Braverman LE, Skarulis MC, Davies TF, DeGroot LJ, Mazzaferri EL, Daniels GH, Ross DS, Luster M, Samuels MH, Becker DV, Maxon HR, Cavalieri RR, Spencer CA, McEllin K, Weintraub BD and Ridgway EC. A comparison of recombinant human thyrotropin and thyroid hormone withdrawal for the detection of thyroid remnant or cancer. J Clin Endocrinol Metab 1999;84:3877-85. 309. Spencer CA, LoPresti JS, Fatemi S and Nicoloff JT. Detection of residual and recurrent differentiated thyroid carcinoma by serum Thyroglobulin measurement. Thyroid 1999;9:435-41. 310. Schlumberger M, C. P., Fragu P, Lumbroso J, Parmentier C and Tubiana M,. Circulating thyrotropin and thyroid hormones in patients with metastases of differentiated thyroid carcinoma: relationship to serum thyrotropin levels. J Clin Endocrinol Metab 1980;51:513-9. 311. Pacini F, Fugazzola L, Lippi F, Ceccarelli C, Centoni R, Miccoli P, Elisei R and Pinchera A. Detection of thyroglobulin in fine needle aspirates of nonthyroidal neck masses: a clue to the diagnosis of metastatic differentiated thyroid cancer. J Clin Endocrinol Metab 1992;74:1401-4.312. Spencer CA, Takeuchi M and Kazarosyan M. Current Status and Performance Goals for Serum Thyroglobulin Assays. Clin Chem 1996;42:164-73. 313. Feldt-Rasmussen U and Schlumberger M. European interlaboratory comparison of serum thyroglobulin measurement. J Endocrinol Invest 1988;11:175-81. 314. Feldt-Rasmussen U, Profilis C, Colinet E, Black E, Bornet H, Bourdoux P et al. Human thyroglobulin reference material (CRM 457) 2nd part: Physicochemical characterization and certification. Ann Biol Clin 1996;54:343-348. 315. Schlumberger M J. Papillary and Follicular Thyroid Carcinoma. NEJM 1998;338:297-306. 316. Hjiyiannakis P, Mundy J and Harmer C. Thyroglobulin antibodies in differentiated thyroid cancer. Clin Oncol 1999;11:240-4. 317. Spencer CA. Recoveries cannot be used to authenticate thyroglobulin (Tg) measurements when sera contain Tg autoantibodies. Clin Chem 1996;42:661-3. 318. Massart C and Maugendre D. Importance of the detection method for thyroglobulin antibodies for the validity of thyroglobulin measurements in sera from patients with Graves’ disease. Clin Chem 2002;48:102-7. 319. Mariotti S, Barbesino G, Caturegli P, Marino M, Manetti L, Pacini F, Centoni R and Pinchera A. Assay of thyroglobulin in serum with thyroglobulin autoantibodies: an unobtainable goal? J Clin Endocrinol Metab 1995;80:468-72. 320. Black EG and Hoffenberg R. Should one measure serum thyroglobulin in the presence of anti-thyroglobulin antibodies? Clin Endocrinol 1983;19:597-601. 321. Schneider AB and Pervos R. Radioimmunoassay of human thyroglobulin: effect of antithyroglobulin autoantibodies. J Clin Endocrinol Metab 1978;47:126-37. 322. Spencer CA, Platler BW and Nicoloff JT. The effect of 125-I thyroglobulin tracer heterogeneity on serum Tg RIA measurement. Clin Chem Acta 1985;153:105-115. 323. Bugalho MJ, Domingues RS, Pinto AC, Garrao A, Catarino AL, Ferreira T, Limbert E and Sobrinho L. Detection of thyroglobulin mRNA transcripts in peripheral blood of individuals with and without thyroid glands: evidence for thyroglobulin expression by blood cells. Eur J Endocrinol 2001;145:409-13. 324. Bellantone R, Lombardi CP, Bossola M, Ferrante A,Princi P, Boscherini M et al. Validity of thyroglobulin mRNA assay in peripheral blood of postoperative thyroid carcinoma patients in predicting tumor recurrence varies according to the histologic type: results of a prospective study. Cancer 2001;92:2273-9. 325. Bojunga J, Roddiger S, Stanisch M, Kusterer K, Kurek R, Renneberg H, Adams S, Lindhorst E, Usadel KH and Schumm-Draeger PM. Molecular detection of thyroglobulin mRNA transcripts in peripheral blood of patients with thyroid disease by RT-PCR. Br J Cancer 2000;82:1650-5. 326. Smith B, Selby P, Southgate J, Pittman K, Bradley C and Blair GE. Detection of melanoma cells in peripheral blood by means of reverse transcriptase and polymerase chain reaction. Lancet 1991;338:1227-9. 327. Luppi M, Morselli M, Bandieri E, Federico M, Marasca R, Barozzi P, Ferrari MG, Savarino M, Frassoldati A and Torelli G. Sensitive detection of circulating breast cancer cells by reverse-transcriptase polymerase chain reaction of maspin gene. Ann Oncol 1996;7:619-24. 328. Ghossein RA and Bhattacharya S. Molecular detection and characterisation of circulating tumour cells and micrometastases in solid tumours. Eur J Cancer 2000;36:1681-94. 329. Ditkoff BA, Marvin MR, Yemul S, Shi YJ, Chabot J, Feind C et al. Detection of circulating thyroid cells in peripheral blood. Surgery 1996;120:959-65. 330. Arturi F, Russo D, Giuffrida D et al. Early diagnosis by genetic analysis of differentiated thyroid cancer metastases in small lymph nodes. J Clin Endocrinol Metab 1997;82:1638-41.331. Ringel MD, Balducci-Silano PL anderson JS, Spencer CA, Silverman J, Sparling YH, Francis GL, Burman KD, Wartofsky L, Ladenson PW, Levine MA and Tuttle RM. Quantitative reverse transcription-polymerase chain reaction of circulating thyroglobulin messenger ribonucleic acid for monitoring patients with thyroid carcinoma. J Clin Endocrinol Metab 1998;84:4037-42. 332. Biscolla RP, Cerutti JM and Maciel RM. Detection of recurrent thyroid cancer by sensitive nested reverse transcription-polymerase chain reaction of thyroglobulin and sodium/iodide symporter messenger ribonucleic acid transcripts in peripheral blood. J Clin Endocrinol Metab 2000;85:3623-7. 333. Takano T, Miyauchi A, Yoshida H, Hasegawa Y, Kuma K and Amino N. Quantitative measurement of thyroglobulin mRNA in peripheral blood of patients after total thyroidectomy. Br J Cancer 2001;85:102-6. 334. Chelly J, Concordet JP, Kaplan JC and Kahn A. Illegitimate transcription: transcription of any gene in any cell type. Proc Natl Acad Sci USA 1989;86:2617-21. 335. Premawardhana LDKE, Phillips DW, Prentice LM and Smith BR. Variability of serum thyroglobulin levels is determined by a major gene. Clin Endocrinol 1994;41:725-9. 336. Bertelsen JB and Hegedus L. Cigarette smoking and the thyroid. Thyroid 1994;4:327-31. 337. Knudsen N, Bulow I, Jorgensen T, Perrild H, Oversen L and Laurberg P. Serum Tg – a sensitive marker of thyroid abnormalities and iodine deficiency in epidemiological studies. J Clin Endocrinol Metab 2001;86:3599-603. 338. Van den Briel T, West CE, Hautvast JG, Vulsma T, de Vijlder JJ and Ategbo EA. Serum thyroglobulin and urinary iodine concentration are the most appropriate indicators of iodine status and thyroid function under conditions of increasing iodine supply in schoolchildren in Benin. J Nutr 2001;131:2701-6. 339. Gardner DF, Rothman J and Utiger RD. Serum thyroglobulin in normal subjects and patients with hyperthyroidism due to Graves’ disease: effects of T3, iodide, 131I and antithyroid drugs. Clin Endocrinol 1979;11:585-94. 340. Feldt-Rasmussen U, Petersen PH, Date J and Madsen CM. Serum thyroglobulin in patients undergoing subtotal thyroidectomy for toxic and nontoxic goiter. J Endocrinol Invest 1982;5:161-4. 341. Hocevar M, Auersperg M and Stanovnik L. The dynamics of serum thyroglobulin elimination from the body after thyroid surgery. 1997;23:208-10. 342. Cohen JH, Ingbar SH and Braverman LE. Thyrotoxicosis due to ingestion of excess thyroid hormone. Endocrine Rev 1989;10:113-24. 343. Mitchell ML and Hermos RJ. Measurement of thyroglobulin in newborn screening specimens from normal and hypothyroid infants. Clin Endocrinol 1995;42:523-7. 344. Smallridge RC, De Keyser FM, Van Herle AJ, Butkus NE and Wartofsky L. Thyroid iodine content and serum thyroglobulin: clues to the natural history of destruction-induced thyroiditis. J Clin Endocrinol Metab 1986;62:1213-9. 345. Pacini F, Molinaro E, Lippi F, Castagna MG, Agate L, Ceccarelli C, Taddei D, Elisei R, Capezzone M and Pinchera A. Prediction of disease status by recombinant human TSH-stimulated serum Tg in the postsurgical follow-up of differentiated thyroid carcinoma. J Clin Endocrinol Metab 2001;86:5686-90. 346. Cobin RH. 1992. Medullary carcinoma of the thyroid. In Malignant tumors of the thyroid: clinical concepts and controversies. S. D. Cobin RH, editor. Springer-Verlag,, New York. 112-41. 347. Dunn JT. When is a thyroid nodule a sporadic medullary carcinoma? J Clin Endocrinol Metab 1994;78:824-5. 348. Pacini F, Fontanelli M, Fugazzola L and et. al. Routine measurement of serum calcitonin in nodular thyroid diseases allows the preoperative diagnosis of unsuspected sporadic medullary thyroid carcinoma. J Clin Endocrinol Metab 1994;78:826-9. 349. Mulligan LM, Kwok JB, Healey CS, Elsdon MJ, Eng C, Gardner E et al. Germ-line mutations of the RET proto-oncogene in multiple endocrine neoplasia type 2A. Nature 1993;363:458-60. 350. Hofstra RM, Landvaster RM, Ceccherini I et al. A mutation in the RET proto-oncogene associated with multiple endocrine neoplasia type 2B and sporadic medullary thyroid carcinoma. Nature 1994;367:375-6. 351. Heyningen van V. One gene-four syndromes. Nature 1994;367:319-20.352. Becker KL, Nylen ES, Cohen R and Snider RH. Calcitonin: structure, molecular biology and actions. In: J.P. Beleziakian, L.E. Raisz, G.A.Rodan eds. Principle of bone biology, Academic Press, San Diego 1996;:471-4. 353. Motte P, Vauzelle P, Gardet P, Ghillani P, Caillou B, Parmentier C et al. Construction and clinical validation of a sensitive and specific assay for mature calcitonin using monoclonal anti-peptide antibodies. Clin Chim Acta 1988;174:35-54. 354. Zink A, Blind E and Raue F. Determination of serum calcitonin by immunometric two-site assays in normal subjects and patients with medullary thyroid carcinoma. Eur J Clin Chem Biochem 1992;30:831-5. 355. Engelbach M, Gorges R, Forst T, Pfutzner A, Dawood R, Heerdt S, Kunt T, Bockisch A and Beyer J. Improved diagnostic methods in the follow-up of medullary thyroid carcinoma by highly specific calcitonin measurements. J Clin Endocrinol Metab 2000;85:1890-4. 356. Milhaud G, Tubiana M, Parmentier C and Coutris G. Epithelioma de la thyroide secretant de la thyrocalcitonine. C.R. Acad. Sci (serie D), Paris 1968;266:608-10. 357. Guilloteau D, Perdrisot D, Calmettes C and et. al. Diagnosis of medullary carcinoma of the thyroid by calcitonin assay using monoclonal antibodies. J Clin Endocrinol Metab 1990;71:1064-7. 358. Niccoli P, Wion-Barbot N, Caron P and et.al. Interest of routine measurement of serum calcitonin (CT): study in a large series of thyroidectomized patients. J Clin Endocrinol Metab 1997;82:338-41. 359. Wells SA, Baylin SB, Linehan W, Farrell RE, Cox EB, Cooper CW. Provocative agents and the diagnosis of medullary carcinoma of the thyroid gland. Ann Surg 1978;188:139-41. 360. Gagel RF. The abnormal pentagastrin test. Clin Endocrinol 1996;44:221-2. 361. Wion-Barbot N, Schuffenecker I, Niccoli P et al. Results of the calcitonin stimulation test in normal volunteers compared with genetically unaffected members of MEN 2A and familial medullary thyroid carcinoma families. Ann Endocrinol 1997;58:302-8. 362. Barbot N, Calmettes C, Schuffenecker I et al. Pentagastrin stimulation test and early diagnosis of medullary carcinoma using an immunoradiometric assay of calcitonin: comparison with genetic screening in hereditary medullary thyroid carcinoma. J Clin Endocrinol Metab 1994;78:114-20. 363. Erdogan MF, Gullu S, Baskal N, Uysal AR, Kamel N, Erdogan G. Omeprazole: calcitonin stimulation test for the diagnosis follow-up and family screening in medullary carcinoma of the thyroid gland. Ann Surg 1997;188:139-41. 364. Vieira AEF, Mello MP, Elias LLK et al. Molecular and biochemical screening for the diagnosis and management of medullary thyroid carcinoma in multiple endocrine neoplasia Type 2A. Horm Metab Res 2002;34:202-6. 365. Wells SA, Chi DD, toshima K, Dehner LP, Coffin cm, Dowton SB, Ivanovich JL, DeBenedetti MK, Dilley WG and Moley JF. Predictive DNA testing and prophylactic thyroidectomy in patients at risk for multiple endocrine neoplasia type 2A. Ann Surg 1994;220:237-50. 366. Telander RL and Moir CR. Medullary thyroid carcinoma in children. Semin Pediatr Surg 1994;3:188-93. 367. Niccoli-Sire P, Murat A, Baudin E, Henry JF, Proye C, Bigorgne JC et al. Early or prophylactic thyroidectomy in MEN2/FMTC gene carriers: results in 71 thyroidectomized patients. Eur J Endocrinol 1999;141:468-74. 368. Niccoli-Sire P, Murat A, Rohmer V, Franc S, Chabrier G, Baldet L, Maes B, Savagner F, Giraud S, Bezieau S, Kottler ML, Morange S and Conte-Devolx B. Familial medullary thyroid carcinoma (FMTC) with non-cysteine RET mutations: phenotype-genotype relationship in large series of patients. J Clin Endocrinol Metab 2001;86:3756-53. 369. Body JJ, Chanoine JP, Dumon JC and Delange F. Circulating calcitonin levels in healthy children and subjects with congenital hypothyroidism from birth to adolescence. J Clin Endocrinol Metab 1993;77:565-7. 370. Gharib H, Kao PC and Heath H. Determination of silica-purified plasma calcitonin for the detection and management of medullary thyroid carcinoma: comparison of two provocative tests. Mayo Clin Proc 1987;62:373-8. 371. Telander R, Zimmerman D, Sizemore GW, van Heerden JA and Grant CS. Medullary carcinoma in children. Results of early detection and surgery. Arch Surg 1989;124:841-3.372. Calmettes C, Ponder BA, Fisher JA and Raue F. Early diagnosis of multiple endocrine neoplasia type 2 syndrome: consensus statement. European community concerted action: medullary thyroid carcinoma. Eur J Clin Invest 1992;22:755-60. 373. Modigliani E, Cohen R, Campos JM, Conte-Devolx B, Maes B, Boneu A et al. Prognostic factors for survival and biochemical cure in medullary thyroid carcinoma: results in 899 patients. Clin Endocrinol 1998;48:265-73. 374. Machens A, Gimm O, Ukkat J et al. Improved prediction of calcitonin normalization in medullary thyroid carcinoma patients by quantitative lymph node analysis. Cancer 2000;88:1909-15. 375. Fugazzola L, Pinchera A, Lucchetti F et al. Disappearence rate of serum calcitonin after total thyroidectomy for medullary thyroid carcinoma. Internat J Biolog Markers 1994;9:21-4. 376. Vierhapper H, Raber W, Bieglmayer C and et.al. Routine measurement of plasma calcitonin in nodular thyroid diseases. J Clin Endocrinol Metab 1997;82:1589-93. 377. Fereira-Valbuena H, Fernandez de Arguello E, Campos G, Ryder E and Avellaneda A. Serum concentration of calcium and calcitonin in hyperthyroidism caused by Graves’ disease. Invest Clin 1991;32:109-14. 378. Lips CJM, Hoppener JWM and Thijssen JHH. Medullary thyroid carcinoma: role of genetic testing and calcitonin measurement. Ann Clin Biochem 2001;38:168-79. 379. Niccoli P, Brunet Ph, Roubicek C, Roux F, Baudin E, Lejeune PJ et al. Abnormal calcitonin basal levels and pentagastrin response in patients with chronic renal failure on maintenance hemodialysis. Eur J Endocrinol 1995;132:75-81. 380. Snider RH, Nylen ES and Becker KL. Procalcitonin and its component peptides in systemic inflammation: immunochemical characterization. J Invest Med 1997;47:552-60. 381. Russwurn S, Wiederhold M, Oberhoffer M et al. Molecular aspects and natural source of Procalcitonin. Clin Chem Lab Med 1999;37:789-97. 382. Niccoli P, Conte-Devolx B, Lejeune PJ, Carayon P, Henry JF, Roux F et al. Hypercalcitoninemia in conditions other than medullary cancers of the thyroid. Ann Endocrinol 1996;57:15-21. 383. Baudin E, Bidart JM, Rougier P et al. Screening for multiple endocrine neoplasia type 1 and hormonal production in apparently sporadic neuroendocrine tumors. J Clin Endocrinol Metab 1999;84:69-75. 384. DeLellis RA. C-Cell hyperplasia. In: Rosai J., Carangiu M.L., DeLellis R.A. eds: Atlas of Tumor Pathology, 3rd. series, Fasc 5: tumors of the thyroid gland. Washington DC, Armed Forces Institute of Pathology. 1992;:247-58. 385. Guyetant S, Wion-Barbot N and Rousselet MC. C-cell hyperplasia associated with chronic lymphocytic thyroiditis: a retrospective study of 112 cases. Hum Pathol 1994;25:514-21. 386. Albores-Saavedra J, Monforte H, Nadji M and Morales AR. C-Cell hyperplasia in thyroid tissue adjacent to follicular cell tumor. Hum Pathol 1988;19:795-9. 387. Mulligan LM, Marsh DJ, Robinson BG, Schuffenecker I, Zedenius J, Lips CJ et al. Genotype-phenotype correlation in multiple endocrine neoplasia type 2: report of the international RET mutation consortium. J Intern Med 1995;238:243-6. 388. Eng C, Clayton D, Schuffenecker I, Lenoir G, Cote G, Gagel RF et al. The relationship between specific RET proto-oncogene mutations and disease phenotype in multiple endocrine neoplasia type 2. International RET mutation consortium analysis. JAMA 1996;276:1575-9. 389. Ito S, Iwashita T, Asai N, Murakami H, Iwata Y, Sobue G et al. Biological properties of RET with cysteine mutations correlate with multiple endocrine neoplasia type 2A, familial medullary thyroid carcinoma and Hirschsprung’s disease phenotype. Cancer Res 1997;57:2870-2. 390. Heshmati HM, Gharib H, Khosla S et al. Genetic testing in medullary thyroid carcinoma syndromes: mutation types and clinical significance. Mayo Clin Proc 1997;72:430-6. 391. Berndt I, Reuter M, Saller B et al. A new hot spot for mutations in the RET proto-oncogene causing familial medullary thyroid carcinoma and multiple endocrine neoplasia type 2A. J Clin Endocrinol Metab 1998;83:770-4. 392. Komminoth P, Roth J, Muletta-Feurer S, Saremaslani P, Seelentag WKF and Heitz PU. RET proto-oncogene point mutations in sporadic neuroendocrine tumors. J Clin Endocrinol Metab 1996;81:2041-6. 393. Conte-Devolx B, Schuffenecker I, Niccoli P, Maes B, Boneu A, Barbot N et al. Multiple Endocrine Neoplasia Type 2: Management of patients and subjects at risk. Horm Res 1997;47:221-6. 394. Smith DP, Houghton C and Ponder BA. Germline mutation of RET codon 883 in two cases of de novo MEN2B. Oncogene 1997;15:1213-7. 395. Carlson KM, Bracamontes J, Jackson CE, Clark R, Lacroix A, Wells SA Jr et al. Parent-of-origin effects in multiple endocrine neoplasia type 2B. J Hum Genet 1994;55:1076-82. 396. Moers AMJ, Landsvater RM, Schaap C, van Veen JM, de Valk IAJ, Blijham GH et al. Familial medullary thyroid carcinoma: not a distinct entity/ Genotype-phenotype correlation in a large family: familial medullary thyroid carcinoma revisited. Am J Med 1996;101:634-41. 397. Dunn JT. Iodine deficiency – the next target for elimination. N Engl J Med 1992;326:267-8. 398. Delange F. Correction of iodine deficiency: benefits and possible side effects. Eur J Endocrinol 1995;132:542-3. 399. Dunn JT. Whats happening to our iodine. J Clin Endocrinol Metab 1998;83:3398-3400. 400. Knudsen N, Christiansen E, Brandt-Christensen M, Nygaard B and Perrild H. Age- and sex-adjusted iodine/creatinine ratio. A new standard in epidemiological surveys? Evaluation of three different estimates of iodine excretion based on casual urine samples and comparison to 24 h values. Eur J Clin Nutr 2000;54:361-3. 401. Aumont G and Tressol JC. Improved routine method for the determination of total iodine in urine and milk. Analyst 1986;111:841-3. 402. Unak P, Darcan S, Yurt F, Biber Z and Coker M. Determination of iodine amounts in urine and water by isotope dilution analysis. Biol Trace Elem Res Winter 1999;71-2:463-70. 403. Kilbane MT, Ajja RA, Weetman AP, Dwyer R, McDermott EWM, O’Higfins NJ and Smyth PPA. Tissue Iodine content and serum mediated 125I uptake blocking activityin breast cancer. J Clin Endocrinol Metab 2000;85:1245-50. 404. Liberman CS, Pino SC, Fang SL, Braverman LE and Emerson CH. Circulating iodine concentrations during and after pregnancy. J Clin Endocrinol Metab 1998;83:3545-9. 405. Vought RL, London WT, Lutwak L and Dublin TD. Reliability of estimates of serum inorganic iodine and daily faecal and urinary iodine excretion from single casual specimens. J Clin Endcorinol Metab 1963;23:1218-28. 406. Smyth PPA, Darke C, Parkes AB, Smith DF, Hetherton AM and Lazarus JH. Assessment of goitre in an area of endemic iodine deficiency. Thyroid 1999;9:895-901. 407. Thomson CD, Smith TE, Butler KA and Packer MA. An evaluation of urinary measures of iodine and selenium status. J Trace Elem Med and Biol 1996;10:214-22. 408. Als C, Helbling A, Peter K, Haldimann M, Zimmerli B and Gerber H. Urinary iodine concentration follows a circadian rhythm: A study with 3023 spot urine samples in adults and children. J Clin Endocrinol Metab 2000;85:1367-9. 409. Lightowler H and Davis JG. Iodine intake and iodine deficiency in vegans as assessed by the duplicate-portion technique and urinary iodine excretion. Br. J Nutr 1999;80:529-35. 410. Utiger RD. Maternal hypothyroidism and fetal development. N Engl J Med 1999;341:601-2. 411. Aboul-Khair S, Crooks J, Turnbull AC and Hytten FE. The physiological changes in thyroid function during pregnancy. Clin Sci 1964;27:195-207. 412. Smyth PPA, Smith DF, Radcliff M and O’Herlihy C. Maternal iodine status and thyroid volume during pregnancy: correlation with neonatal intake. J Clin Endocrinol Metab 1997;82:2840-3. 413. Gunton JE, Hams GH, Fiegert M and McElduff A. iodine deficiency in ambulatory participants at a Sydney teaching hospital: Is Australia truly iodine replete? Med J Aust 1999;171:467-70. 414. Smyth PPA. Variation in iodine handling during normal pregnancy. Thyroid 1999;9:637-42. 415. Institute of Medicine. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium and Zinc. National Academic Press 2001 416. Koutras DA, Papadoupoulos SN, Sfontouris JG and Rigopoulos GA. Comparison of methods for measuring the plasma inorganic iodine and the absolute iodine uptake by the thyroid gland. J Clin Endocrinol Metab 1968;28:757-60. 417. Mizukami Y, Michigishi T, Nonomura A, Hashimoto T, Tonami N, Matsubara F et al. Iodine-induced hypothyroidism: a clinical and histological study of 28 patients. J Clin Endocrinol Metab 1993;76:466-71. 418. Heymann WR. Potassium iodide and the Wolff-Chaikhoff effect: relevance for the dermatologist. J Am Acad Dermatol 2000;42:490-2.s419. Stanbury JB, Ermans AE, Bourdoux P, Todd C, Oken E, Tonglet R, Bidor G, Braverman LE and Medeiros-Neto G. Iodine-induced hyperthyroidism: occurrence and epidemiology. Thyroid 1998;8:83-100. 420. Roti E and Uberti ED. Iodine excess and hyperthyroidism. Thyroid 2001;5:493-500. 421. Baltisberger BL, Minder CE and Burgi H. Decrease of incidence of toxic nodular goitre in a region of Switzerland after full correction of mild iodine deficiency. Eur J Endocrinol 1995;132:546-9. 422. Bacher-Stier RG, Totsch M, Kemmler G, Oberaigner W and Moncayo R. Incidence and clinical characteristics of thyroid carcinoma after iodine prophylaxis in an endemic goiter country. Thyroid 1997;7:733-41. 423. Barakat MCD, Carson D, Hetherton AM, Smyth PPA and Leslie H. Hypothyroidism secondary to topical iodine treatment in infants with spina bifida. Acta Paediat 1994;83:741-3. 424. Martino E, Safran M, Aghino-Lombardi F, Rajatanavin R, Lenziardi M, Fay M et al. Environmental iodine intake and thyroid dysfunction during chronic amiodarone therapy. Ann Intern Med 1984;101:28-34. 425. Rose NR, Rasooly L, Saboori AM and Burek CL. Linking iodine with autoimmune thyroiditis. Environmental Health Perspectives 1999;107:749-52. 426. Premawardhana LDKEPA, Smyth PPA, Wijeyaratne C, Jayasinghe A, De Silva H and Lazarus JH. Increased prevalence of thyroglobulin antibodies in Sri Lankan schoolgirls – is iodine the cause? Eur J Endocrinol 2000;143:185-8. 427. Costa A, Testori OB, Cenderelli C, Giribone G and Migliardi M. Iodine content of human tissues after administration of iodine containing drugs or contrast media. J Endocrinol Invest 1978;1:221-5. 428. May W, Wu D, Eastman C, Bourdoux P and Maberly G. Evaluation of automated urinary iodine methods: problems of interfering substances identified. Clin Chem 1990;35:865-9. 429. Lauber K. Iodine determination in biological material. Kinetic measurement of the catalytic activity of iodine. Analyt Chem 1975;47:769-71. 430. Mantel M. Improved method for the determination of iodine in urine. Clin Chim Acta 1971;33:39-44. 431. Dunn JT, Crutchfield HE, Gutenkunst R and Dunn AD. Two simple methods for measuring iodine in urine. Thyroid 1993;3:119-23. 432. May SL, May WA, Bourdoux PP, Pino S, Sullivan KM and Maberly GF. Validation of a simple, manual urinary iodine method for estimating the prevalence of iodine-deficiency disorders and interlaboratory comparison with other methods. J Clin Nutr 1997;65:1441-5. 433. Ohashi T, Yamaki M, Pandav SC, Karmarkar GM and Irie M. Simple microplate method for determination of urinary iodine. Clin Chem 2000;46:529-36. 434. Rendl J, Seybold S and Borner W. Urinary iodine determined by paired-ion reverse-phase HPLC with electrochemical detection. Clin Chem 1994;40:908-13. 435. Tsuda K, Namba H, Nomura T, Yokoyama N, Yamashita S, Izumi M and Nagataki S. Automated Measurement of urinary iodine with use of ultraviolet radiation. Clin Chem 1995;41:581-5. 436. Haldimann M, Zimmerli B, Als C and Gerber H. Direct determination of urinary iodine by inductively coupled plasma mass spectrometry using isotope dilution with iodine-129. Clin Chem 1998;44:817-24. 437. Mura P, Piriou A, Guillard O, Sudre Y and Reiss D. Dosage des iodures urinares par electrode specifique: son interet au cours des dysthyroides. Ann Biol Clin 1985;44:123-6. 438. Allain P, Berre S, Krari N, Laine-Cessac P, Le Bouil A, Barbot N, Rohmer V and Bigorgne JC. Use of plasma iodine assays for diagnosing thyroid disorders. J Clin Pathol 1993;46:453-5. 439. Vander JB, Gaston EA and Dawber TR. The significance of nontoxic thyroid nodules: Final report of a 15-year study of the incidence of thyroid malignancy. Ann Intern Med 1968;69:537-40. 440. Rojeski MT and Gharib H. Nodular thyroid disease: Evaluation and management. N Engl J Med 1985;313:428-36. 441. Mazzaferri EL. Management of a solitary thyroid nodule. N Engl J Med 1993;328:553-9. 442. Kirkland RT and Kirkland JL. Solitary thyroid nodules in 30 children and report of a child with thyroid abscess. Pediatrics 1973;51:85-90. 443. Rallison ML, Dobyns EM, Keating FR, Rall J and Tyler E. Thyroid nodularity in children. JAMA 1975;233:1069-72.444. Khurana KK, Labrador E, Izquierdo R, Mesonero CE and Pisharodi LR. The role of fine-needle aspiration biopsy in the management of thyroid nodules in children, adolescents and young adults: A multi-institutional study. Thyroid 1999;4:383-6. 445. Aghini-Lombardi F, Antonangeli L, Martino E, Vitti P, Maccherini D, Leoli F, Rago T, Grasso L, Valeriano R, Balestrieri A and Pinchera A. The spectrum of thyroid disorders in an iodine-deficient community: the Pescopanano Survey. J Clin Endocrinol Metab 1999;84:561-6. 446. Hamburger JI, Husain M, Nishiyama R, Nunez C and Solomon D. Increasing the accuracy of fine-needle biopsy for thyroid nodules. Arch Pathol Lab Med 1989;113:1035-41. 447. Hundahl SA, Cady B, Cunningham MP, Mazzaferri E, McKee RF, Rosai J, Shah JP, Fremgen AM, Stewart AK and Holzer S. Initial results from a prospective cohort study of 5583 cases of thyroid carcinoma treated in the United States during 1996. Cancer (Cytopathol) 2000;89:202-17. 448. Leenhardt L, Hejblum G, Franc B, Du Pasqueir Fediaevsky L, Delbot T, De Guillouzic D, Menegaux F, Guillausseau C, Hoang C, Turpin G and Aurengo A. Indications and limits of ultrasound-guided cytology in the management of nonpalpable thyroid nodules. J Clin Endocrinol Metab 1999;84:24-8. 449. Braga M, Cavalcanti TC, Collaco LM and Graf H. Efficacy of ultrasound-guided fine-needle aspiration biopsy in the diagnosis of complex thyroid nodules. J Clin Endocrinol Metab 2001;86:4089-91. 450. Cochand-Priollet B, Guillausseau P, Chagnon S, Hoang C, Guillausseau-Scholer C, Chanson P, Dahan H, Warnet A, Tran Ba Huy PT and Valleur P. The diagnostic value of fine-needle aspiration biopsy under ultrasonoraphy in nonfunctional thyroid nodules: a prospective study comparing cytologic and histologic findings. Am J Med 1994;97:152-7. 451. Takashima S, Fukuda H and Kobayashi T. Thyroid nodules: Clinical effect of ultrasound-guided fine needle aspiration biopsy. J Clin Ultrasound 1994;22:535-42. 452. Gharib H. Fine-needle aspiration biopsy of thyroid nodules: Advantages, limitations and effect. Mayo Clin Proc 1994;69:44-9. 453. Hamberger B, Gharib H, Melton LF III, Goellner JR and Zinsmeister AR. Fine-needle aspiration biopsy of thyroid nodules. Impact on thyroid practice and cost of care. Am J Med 1982;73:381-4. 454. Grant CS, Hay ID, Gough IR, McCarthy PM and Goelliner JR. Long-term follow-up of patients with benign thyroid fine-needle aspiration cytologic diagnoses. Surgery 1989;106:980-6. 455. Liel Y, Ariad S and Barchana M. Long-term follow-up of patients with initially benign fine-needle aspirations. Thyroid 2001;11:775-8. 456. Belfiore A, La Rosa G, La Porta GA, Giuffrida D, Milazzo G, Lupo L, Regalbuto C and V. R. Cancer Risk in patients with cold thyroid nodules: Relevance of iodine intake, sex, age and multinodularity. J Amer Med 1992;93:363-9. 457. Tuttle RM, Lemar H and Burch HB. Clinical features associated with an increased risk of thyroid malignancy in patients with follicular neoplasia by fine-needle aspiration. Thyroid 1998;8:377-83. 458. Kumar H, Daykin J, Holder R, Watkinson JC, Sheppard M and Franklyn JA. Gender, clinical findings and serum thyrotropin measurements in the prediction of thyroid neoplasia in 1005 patients presenting with thyroid enlargement and investigated by fine-needle aspiration cytology. Thyroid 1999;11:1105-9. 459. Moosa M and Mazzaferri EL. Outcome of differentiated thyroid cancer diagnosed in pregnant women. J Clin Endocrinol Metab 1997;82:2862-6. 460. Oertel YC. A pathologist trying to help endocrinologists to interpret cytology reports from thyroid aspirates. J Clin Endocrinol Metab 2002;87:1459-61. 461. De Micco, Zoro P, Garcia S, Skoog L, Tani EM, C. PK and Henry JF. Thyroid peroxidase immunodetection as a tool to assist diagnosis of thyroid nodules on fine-needle aspiration biopsy. Eur J Endocrinol 1994;131:474-9. 462. Faroux MJ, Theobald S, Pluot M, Patey M and Menzies D. Evaluation of the monoclonal antithyroperoxidase MoAb47 in the diagnostic decision of cold thyroid nodules by fine-needle aspiration. Pathol Res Pract 1997;193:705-12. 463. Inohara H, Honjo Y, Yoshii T, Akahani S, Yoshida J, Hattori K, Okamoto S, Sawada T, Raz A and Kubo T. Expression of galectin-3 in fine-needle aspirates as a diagnostic marker differentiating benign from malignant thyroid neoplasms. Cancer 1999;85:2475-84.464. Medeiros-Neto G, Nascimento MC, Bisi H, Alves VA, Longatto-Filho A and Kanamura CT. Differential reactivity for Galectin-3 in Hurthle Cell Adenomas and Carcinomas. Endocr Pathol 2001;12:275-9. 465. Saggiorato E, Cappia S, De Guili P, Mussa A, Pancani G, Caraci P, Angeli A and Orlandi F. Galectin -3 as a presurgical immunocytodiagnostic marker of minimally invasive follicular carcinoma. J Clin Endocrinol Metabl 2001;86:5152-8. 466. Bartolazzi A, Gasbarri A, Papotti M, Bussolati G, Lucante T, Khan A, Inohara H, Marandino F, Orkandi F, Nardi F, Vacchione A, Tecce R and Larsson O. Application of an immunodiagnostic method for improving preoperative diagnosis of nodular thyroid lesions. Lancet 2001;357:1644-50. 467. Goellner JR. Problems and pitfalls in thyroid cytology. Monogr Pathol 1997;39:75-93. 468. Oertel YC, O. J. Diagnosis of benign thyroid lesions: fine-needle aspiration and histopathologic correlation. Ann Diagn Pathol 1998;2:250-63. 469. Baldet L, Manderscheid JC, Glinoer D, Jaffiol C, Coste-Seignovert B and Percheron C. The management of differentiated thyroid cancer in Europe in 1988. Results of an international survey. Acta Endocrinol (Copenh) 1989;120:547-58. 470. Baloch ZW, Fleisher S, LiVolsi VA and Gupta PK. Diagnosis of “follicular neoplasm”: a gray zone in thyroid fine-needle aspiration cytology. Diagn Cytopathol 2002;26:41-4. 471. Herrmann ME, LiVolsi VA, Pasha TL, Roberts SA, Wojcik EM and Baloch ZW. Immunohistochemical expression of Galectin-3 in benign and malignant thyroid lesions. Arch Pathol Lab Med 2002;126:710-13. 472. Leteurtre E, Leroy Z, Pattou F, Wacrenier A, Carnaille B, Proye C and Lecomte-Houcke M. Why do frozen sections have limited value in encapsulated or minimally invasive follicular carcinoma of the thyroid? Amer J Clin Path 2001;115:370-4. 473. Stojadinovic A, Ghossein RA, Hoos A, Urist MJ, Spiro RH, Shah JP, Brennan MF, Shaha AR and Singh B. Hurthle cell carcinoma: a critical histopathologic appraisal. J Clin Oncol 2001;19:2616-25. 474. Carmeci C, Jeffrey RB, McDougall IR, Nowels KW and Weigel RJ. Ultrasound-guided fine-needle aspiration biopsy of thyroid masses. Thyroid 1998;8:283-9. 475. Yang GCH, Liebeskind D and Messina AV. Ultrasound-guided fine-needle aspiration of the thyroid assessed by ultrafast Papanicoulaou stain: Data from 1135 biopsies with a two- six-year follow-up. Thyroid 2001;6:581-9. 476. Fisher DA, Dussault JH, Foley TP, Klein AH, LaFranchi S, Larsen PR, Mitchell NL, Murphey WH and Walfish PG. Screening for congenital hypothyroidism: results of screening one million North American infants. J Pediatr 1979;94:700. 477. Brown AL, Fernhoff PM, Milner J, McEwen C and Elsas LS. Racial differences in the incidence of congenital hypothyroidism. J Pediatr 1981;99:934-. 478. LaFranchi SH, Dussault JH, Fisher DA, Foley TP and Mitchell ML. Newborn screening for congenital hypothyroidism: Recommended guidelines. Pediatrics 1993;91:1203-9. 479. Gruters A, Delange F, Giovanelli G, Klett M, Richiccioli P, Torresani T et al. Guidelines for neonatal screening programmes for congenital hypothyroidism. Pediatr 1993;152:974-5. 480. Toublanc JE. Guidelines for neonatal screening programs for congenital hypothyroidism. Acta Paediatr 1999;88 Suppl 432:13-4. 481. Vulsma T, Gons MH and de Vijlder JJ. Maternal-fetal transfer of thyroxine in congenital hypothyroidism due to a total organification defect or thyroid agenesis. N Engl J Med 1989;321:13-6. 482. Gruneiro-Papendieck L, Prieto L, Chiesa A, Bengolea S, Bossi G and Bergada C. Usefulness of thyroxine and free thyroxine filter paper measurements in neonatal screening for congenital hypothyroidism of preterm babies. J Med Screen 2000;7:78-81. 483. Hanna DE, Krainz PL, Skeels MR, Miyahira RS, Sesser DE and LaFranchi SH. Detection of congenital hypopituitary hypothyroidism: Ten year experience in the Northwest Regional Screening Program. J Pediatr 1986;109:959-64. 484. Fisher DA. Hypothyroxinemia in premature infants: is thyroxine treatment necessary? Thyroid 1999;9:715-20.485. Wang ST, Pizzalato S and Demshar HP. Diagnostic effectiveness of TSH screening and of T4 with secondary TSH screening for newborn congenital hypothyroidism. Clin Chim Acta 1998;274:151-8. 486. Delange F. Screening for congenital hypothyroidism used as an indicator of the degree of IDD and its control. Thyroid 1998;8:1185-92. 487. Law WY, Bradley DM, Lazarus JH, John R and Gregory JW. Congenital hypothyroidism in Wales (1982-93): demographic features, clinical presentation and effects on early neurodevelopment. Clin Endocrinol 1998;48:201-7. 488. Mei JV, Alexander JR, Adam BW and Hannon WH. Use of filter paper for the collection and analysis of human whole blood specimens. J Nutr 2001;131:1631S-6S. 489. LaFranchi SH, Hanna CE, Krainz PL, Skeels MR, Miyahira RS and Sesser DE. Screening for congenital hypothyroidism with specimen collection at two time periods: Results of the Northwest Regional Screening Program. J Pediatr 1985;76:734-40. 490. Zakarija M, McKenzie JM and Eidson MS. Transient neonatal hypothyroidism: Characterization of maternal antibodies to the Thyrotropin Receptor. J Clin Endocrinol Metab 1990;70:1239-46. 491. Matsuura N, Yamada Y, Nohara Y, Konishi J, Kasagi K, Endo K, Kojima H and Wataya K. Familial neonatal transient hypothyroidism due to maternal TSH-binding inhibitor immunoglobulins. N Engl J Med 1980;303:738-41. 492. McKenzie JM and Zakaria M. Fetal and neonatal hyperthyroidism and hypothyroidism due to maternal TSH receptor antibodies. Thyroid 1992;2:155-9. 493. Vogiatzi MG and Kirkland JL. Frequency and necessity of thyroid function tests in neonates and infants with congenital hypothyroidism. Pediatr 1997;100. 494. Pohlenz J, Rosenthal IM, Weiss RE, Jhiang SM, Burant C and Refetoff S. Congenital hypothyroidism due to mutations in the sodium/iodide symporter. Identification of a nonsense mutation producing a downstream cryptic 3′ splice site. J Clin Invest 1998;101:1028-35. 495. Nordyke RA, Reppun TS, Mandanay LD, Wood JC, Goldstein AP and Miyamoto LA. Alternative sequences of thyrotropin and free thyroxine assays for routine thyroid function testing. Quality and cost. Arch Intern Med 1998;158:266-72. 496. Hansen D, Bennedbaek FN, Hoier- Madsen M, Jacobsen BB, and Hegedus L. Thyroid function, morphology and autoimmunity in patients with insulin-dependent diabetes mellitus. Eur J Endocrinol 1999;140:512-8. 497. Pedersen OM, Aardal NP, Larssen TB, Varhaug JE, Myking O, and Vik-Mo H. The value of ultrasonography in predicting autoimmune thyroid disease. Thyroid 2000;10:251-9. 498. Harach HR, Solís Sánchez S, Williams ED: Pathology of the autonomously functioning (hot) thyroid nodule. Ann Diagn Pathol 2002;6:10-19. 499. Pretell EA, Delange F, Hostalek U, Corigliano S, Barreda L, Higa AM, Altschuler N,Barragán, D, Cevallos JL, Gonzales O, Jara JA, Medeiros-Neto G, Montes JA, Muzzo S, Pacheco VM and Cordero L. Iodine nutrition improves in Latin America. Thyroid 2004;14:590-9.

BIOARS
https://www.wiener-lab.com/es-AR/

Más notas de la edición 3

MERCK

Lee desde Issuu nuestra última edición publicada en Julio 2024, Edición número 155

GEMATEC
BERNARDO LEW